• 제목/요약/키워드: heat shock protein 90

검색결과 132건 처리시간 0.025초

Analysis of Genes Regulated by HSP90 Inhibitor Geldanamycin in Neurons

  • ;;권오유
    • 대한의생명과학회지
    • /
    • 제15권1호
    • /
    • pp.97-99
    • /
    • 2009
  • Geldanamycin is a benzoquinone ansamycin antibiotic that binds to cytosol HSP90 (Heat Shock Protein 90) and changes its biological function. HSP90 is involved in the intracellular important roles for the regulation of the cell cycle, cell growth, cell survival, apoptosis, angiogenesis and oncogenesis. To identify genes expressed during geldanamycin treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up-or down-regulated genes) which are geldanamycin differentially expressed in neurons. Granzyme B is the gene most significantly increased among 204 up-regulated genes (more than 2 fold over-expression) and Chemokine (C-C motif) ligand 20 is the gene most dramatically decreased among 491 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Cxc110, Cyp11a1, Gadd45a, Gja1, Gpx2, Ifua4, Inpp5e, Sox4, and Stip1 are involved stress-response gene, and Cryab, Dnaja1, Hspa1a, Hspa8, Hspca, Hspcb, Hspd1, Hspd1, and Hsph1 are strongly associated with protein folding. Cell cycle associated genes (Bc13, Brca2, Ccnf, Cdk2, Ddit3, Dusp6, E2f1, Illa, and Junb) and inflammatory response associated genes (Cc12, Cc120, Cxc12, Il23a, Nos2, Nppb, Tgfb1, Tlr2, and Tnt) are down-regulated more than 2 times by geldanamycin treatment. We found that geldanamycin is related to expression of many genes associated with stress response, protein folding, cell cycle, and inflammation by DNA microarray analysis. Further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by geldanamycin. The resulting data will give the one of the good clues for understanding of geldanamycin under molecular level in the neurons.

  • PDF

대사에너지가 열 스트레스에 노출된 오리의 간, 십이지장 융모, 미생물, 유전자 조절에 미치는 영향 (Influence of metabolizable energy on histology of liver and duodenal villus, microflora, heat shock protein gene in duck under heat stress)

  • 신종서;양부근;박병성
    • 한국응용과학기술학회지
    • /
    • 제34권3호
    • /
    • pp.613-622
    • /
    • 2017
  • 본 연구는 열 스트레스 하에서 오리사료 내 대사에너지(ME) 수준이 오리의 간, 십이지장 융모, 미생물, 유전자 조절에 미치는 영향을 조사하였다. 총 240마리의 육용 오리 채리밸리(Anas platyrhynchos)를 4처리구로 완전임의배치 한 후 42일 동안 사육하였다. 처리구는 ME 2900 kcal/kg, ME 3000 kcal/kg, ME 3100 kcal/kg 및 ME 3200 kcal/kg로 구분하였다. 간 조직은 처리구 사이의 차이가 없었고, 십이지장 융모 및 창자샘 길이는 ME 3000과 비교할 때 2900은 10.58% 감소하였으나 3100, 3200과의 사이에 차이는 없었다. 맹장 Latobacillus는 ME 3000과 비교할 때 2900은 9.47% 감소하였으나 3100, 3200은 각각 2.52, 3.24% 증가하였다. Total aerobic bacteria, E. coli, Coliform bacteria는 ME 3000과 비교할 때 2900은 증가하였으나 3100, 3200은 차이가 나타나지 않았다. 간에서 HSP (heat shock proteins)-mRNA 중 HSP $90-{\alpha}$는 ME 3000과 비교할 때 2900은 48.60% 감소하였으며 3100, 3200은 차이가 없거나 증가하였다.

황련 열수추출물을 처치한 인간 대장암 세포 SNU-81에서의 단백질 발현 변화 (Monitoring the Change of Protein Expression in Human Colon Cancer Cell SNU-81 treated with the Water-Extract of Coptis japonica)

  • 유태모;김병수;유병철;유화승
    • 대한약침학회지
    • /
    • 제12권1호
    • /
    • pp.5-12
    • /
    • 2009
  • Background : Anticancer effects of herbal medicine have been reported in various types of cancer, but the systematic approaches to explain molecular mechanism(s) are not established yet. Objective : To find the anticancer-effect and mechanism(s) of Water Extract of Coptis japonica (WECJ) colon cancer cell (SNU-81). Methods : We first selected 11 herbals, and anti-cancer effects of water-extracts from those herbals have been tested in human colon cancer cell line, SNU-81. Among the tested herbals, the WECJ significantly reduced proliferation of SNU-81. To establish a basis of understanding for anti-cancer mechanism, whole proteins have been obtained from SNU-81 harvested at 48 and 96 hrs after the treatment of WECJ, protein expression has been profiled by 2DE-based proteomic approach. Results : Various changes of the protein expression have been monitored, and most frequent dysregulation was found in the molecular chaperons including heat shock protein 90-alpha (Hsp90-alpha), 14-3-3 protein epsilon, T-complex protein 1 subunit alpha, protein disulfide-isomerase A3, and calreticulin. Interestingly, proliferation-associated protein 2G4 has been up-regulated, and it suggests the possible effect of Coptis japonica on ErbB3-regulated signal transduction pathway and growth control of human colon cancer cells. Conclusion : Based upon the present findings, the further study will focus on monitoring various cancer survival factors after artificial regulation of the proteins identified, and it would be the basis for the understanding of the Coptis japonica anti-cancer effect(s) at the molecular level.

고랭지 여름배추의 고온장해 원인 해석 (High Temperature Stress of Summer Chinese Cabbage in Alpine Region)

  • 황선웅;이주영;홍성창;박양호;윤승길;박문희
    • 한국토양비료학회지
    • /
    • 제36권6호
    • /
    • pp.417-422
    • /
    • 2003
  • 고랭지 여름배추의 고온장해원인을 구명하기 위하여 표고별로 배추시료를 채취하여 Hsp, 엽온 분포 및 무기성분 함량을 조사하였다. Hsp는 표고가 낮고 과비를 한 배추 잎에서 더 많이 발현되었고 엽온도 표고 1,100 m에서 재배한 정상적인 배추보다 생리장해를 받은 배추에서 훨씬 더 높았다. 또한 배추 잎에서 즙액 중의 $NO_3-N$ 및 산분해한 CaO 함량만 낮았을 뿐 질소, 인산, 칼리, 고토 등과 같은 대부분의 무기성분 함량은 정상적인 배추보다 훨씬 높았다. 이상의 결과로 볼 때, 표고가 낮은 지대에서 발생하는 배추의 생리장해는 고온이 주원인이므로 해발고도에 따라 배추재배시기를 조절하여야 되며, 특히 과다한 비료를 표층시비하면 고온장해를 가중시킬 우려가 있으므로 반드시 토양검정에 의하여 적정량의 비료를 시용해야 고온장해를 경감시킬 수 있을 것으로 판단된다.

Radicicol이 신경세포에서 베타 아밀로이드 전구단백질의 대사에 미치는 영향 (Effects of Radicicol on the Metabolism of ${\beta}-Amyloid$ Precursor Protein in Neuroblastoma Cells)

  • 임재윤;이일화;이경아;공두균;최부진;이충수;은재순
    • 약학회지
    • /
    • 제51권4호
    • /
    • pp.264-269
    • /
    • 2007
  • Alzheimer’s disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}-amyloid $ (A ${\beta}$) peptides, which are generated by processing of amyloid precursor protein (APP). It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. A${\beta}$ peptides have been believed to be neurotoxic and now are also considered to have effects on the mechanism of memory formation. In this study, effects of radicicol on the metabolism of APP were analyzed. Radicicol inhibited the secretion of A${\beta}$ from the Neuro2a cell line (APPswe cell) expressing APPswe. Beta-site APP cleaving enzyme (BACE) fluorescence resonance energy transfer (FRET) assay revealed that it inhibited BACE activity in a dose dependently manner. Immunoblotting study showed that it inhibited intracellular heat shock protein (HSP)90 and it increased the secretion of HSP90 from the APPswe cells. We suggest that radicicol inhibits APP metabolism and Ap generation by the means of HSP90 inhibitory mechanism and partially BACE inhibitory mechanism. This is the first report that radicicol inhibits the secretion of A${\beta}$ peptides from neuroblastoma cells.

The Effect of Stocking Density on Stress Related Genes and Telomeric Length in Broiler Chickens

  • Beloor, J.;Kang, H.K.;Kim, Y.J.;Subramani, V.K.;Jang, I.S.;Sohn, S.H.;Moon, Yang Soo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권4호
    • /
    • pp.437-443
    • /
    • 2010
  • To be economically profitable, the poultry industry demands an increase in stocking density, which could adversely affect chicken welfare. The current study was performed to investigate the effect of stocking density on stress-related, heat shock protein genes (HSP70 and HSP90), 3-hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) gene and telomere length in broiler chickens. Seven-day-old broiler chickens were housed at High (0.0578 $m^2$/bird), Standard (0.077 $m^2$/bird) and Low (0.116 $m^2$/bird) stocking densities with 8 replicates each until 35 d of age. The growth performance, such as body weight gain and average daily feed intake, was found to be significantly (p<0.05) higher in the Low density group, but these parameters did not show any difference between the High and Standard groups. Other growth performance, such as feed conversion ratio and final feed intake, showed no difference among the treated groups. The expression levels of HSP70 and HMGCR were found to be elevated with the increase of stocking density. The expression level of these genes was significantly (p<0.05) higher in the High density stocked group compared with the other groups, whereas the expression levels were not significantly different between the Low and Standard groups. The expression levels of HSP90 did not show any significant changes among the treated groups. The telomeric length of the birds housed in High density was reduced significantly (p<0.05) when compared to that of the birds in Low density. These results clearly indicate that birds stocked at high density show physiological adaptive changes indicative of stress at gene transcriptional and telomere levels.

분자지표 유전자 발현을 통한 Chironomus riparius 중금속 노출 스트레스 평가 (Stress Evaluation to Heavy Metal Exposure using Molecular Marker in Chironomus riparius)

  • 김원석;박기연;곽인실
    • 생태와환경
    • /
    • 제53권2호
    • /
    • pp.165-172
    • /
    • 2020
  • 중금속은 다양한 경로를 통해 환경 중 배출되어 서식 생물에 노출되며 체내 다양한 생리학적 불균형을 유도한다. 본 연구에서는 수서생물지표종으로 이용되는 깔따구(Chironomus riparius)를 이용하여 야외 중금속(Al, Aluminum; Cr, Chromium; Cu, copper; Mn, Manganese; Zn, Zinc) 농도 노출에 따른 다양한 분자발현 반응과 상관성을 분석하였다. 생물 체내 분자 반응을 관찰하기 위해 heat shock protein 40, 70, 90 (HSP40, 70, 90), cytochrome 450(CYP450), Glutathione S-transferase (GST) and Serine-type endopeptidase (SP)를 이용하였다. 그 결과, 스트레스 분자마커로 이용되는 HSPs 유전자들은 중금속 노출된 개체들에서 대조군보다 높은 경향을 보였으며 Cu 노출 시 가장 높은 발현을 나타냈다. 해독에 관여하는 CYP450과 GST 유전자 발현 결과, Cr과 Cu에서는 다른 노출군에 비해 높은 발현 경향을 나타냈다. SP 유전자 발현 결과 Al을 제외한 모든 노출군이 대조군과 유사한 발현 패턴을 보였다. 이와 같은 연구 결과는 실내에서 환경 중 존재하는 실제 농도를 반영한 독성실험을 통해 노출물질과 농도에 따라 특이적으로 발현하는 분자마커 패턴을 보고하였다. 또한, 수생태계로 유입되는 중금속이 하천에 서식하는 생물에 주는 유해 영향에 대한 정보와 분자 지표 유전자들의 현장 적용 가능성을 보여준다.

Echinococcus granulosus Protoscolex DM9 Protein Shows High Potential for Serodiagnosis of Alveolar Echinococcosis

  • Kim, Jeong-Geun;Han, Xiumin;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • 제60권1호
    • /
    • pp.25-34
    • /
    • 2022
  • Alveolar echinococcosis (AE) caused by infection with E. multilocularis metacestode, represents one of the most fatal helminthic diseases. AE is principally manifested with infiltrative, proliferating hepatic mass, resembling primary hepatocellular carcinoma. Sometimes metastatic lesions are found in nearby or remote tissue. AE diagnosis largely depends on imaging studies, but atypical findings of imaging features frequently require differential diagnosis from other hepatic lesions. Serological tests may provide further evidence, while obtaining reliable AE materials is not easy. In this study, alternative antigens, specific to AE were identified by analyzing E. granulosus protoscolex proteins. An immunoblot analysis of E. granulosus protoscolex showed that a group of low-molecular-weight proteins in the range from 14 kDa to 16 kDa exhibited a sensitive and specific immune response to AE patient sera. Partial purification and proteomic analysis indicated that this protein group contained myosin, tubulin polymerization promoting protein, fatty-acid binding protein, uncharacterized DM9, heat shock protein 90 cochaperone tebp P-23, and antigen S. When the serological applicability of recombinant forms of these proteins was assessed using enzyme-linked immunosorbent assay, DM9 protein (rEgDM9) showed 90.1% sensitivity (73/81 sera tested) and 94.5% specificity (172/181 sera tested), respectively. rEgDM9 showed weak cross-reactions with patient sera from the transitional and chronic stages of cystic echinococcosis (3 to 5 stages). rEgDM9 would serve as a useful alternative antigen for serodiagnosis of both early- and advanced-stage AE cases.

Differential Gene Expression in a Red Alga Gracilaria textorii(Suringar) Hariot (Gracilariales, Florideophyceae) between Natural Populations

  • Woo, Seon-Ock;Ko, Young-Wook;Oh, Yoon-Sik;Kim, Jeong -Ha;Lee, Taek-Kyun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.199-204
    • /
    • 2008
  • The bio-molecules involved in defense mechanisms can be used as efficient biomarkers for physiological changes in organisms caused by both of internal and external stress. Thus, the expression level of genes which encoding such molecules serve as critical 'early warning system' for environmental assessment as well as health diagnosis of biological organisms. In this study, Cytochrome P450, Heat shock protein 90, Ubiquitin and ${\beta}$-actin gene were isolated for the first time from a red alga Gracilaria textorii. The quantitative differential gene expression analyses of three genes, GteCYP1A, GteHsp90 and Gte-UB, were carried out in G. textorii sporophytes collected from two different localities, polluted Sujeong (Masan, Korea) and potentially unpolluted Danggeum (Daemaemuldo Is., Korea). The transcripts of all three tested genes were highly expressed in the Sujeong population. The results suggest: 1) the Sujeong site was more polluted than the Danggeum site; 2) G. textorii could be applicable to marine environment monitoring in coastal regions.

Hepatic Expression of Cu/Zn-Superoxide Dismutase Transcripts in Response to Acute Metal Exposure and Heat Stress in Hemibarbus mylodon (Teleostei: Cypriniformes)

  • Cho, Young-Sun;Bang, In-Chul;Lee, Il-Ro;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제12권3호
    • /
    • pp.179-184
    • /
    • 2009
  • Hemibarbus mylodon (Cypriniformes) is an endemic freshwater fish species in the Korean peninsula, for which urgent conservation efforts are needed. To understand their stress responses in relation to metal toxicity and thermal elevation, we performed a real-time RT-PCR-based expression assay of hepatic copper/zinc-superoxide dismutase (Cu/Zn-SOD), a key antioxidant enzyme, in response to experimental heavy metal exposure or heat treatment. The transcription of hepatic Cu/Zn-SOD was differentially modulated by acute exposure to Cu, cadmium (Cd), or Zn. Exposure to each metal at $5{\mu}M$ for 24 h revealed that Cu stimulated the mRNA expression of Cu/Zn-SOD to a greater extent than the other two heavy metals. The elevation in Cu/Zn-SOD transcripts in response to Cu exposure was dose-dependent (0.5 to $5{\mu}M$). Time course analysis of Cu/Zn-SOD expression in response to Cd exposure ($5{\mu}M$) revealed a transient pattern up to day 7. Exposure to thermal stress (an increase from 22 to $30^{\circ}C$ at a rate of $1^{\circ}C/h$ followed by $30^{\circ}C$ for 18 h) did not significantly alter SOD transcription, although heat shock protein 90 kDa (HSP90) transcription was positively correlated with an increase in temperature.