• Title/Summary/Keyword: heat pressing

Search Result 188, Processing Time 0.023 seconds

Texture and Plastic deformation of the Severe Ecaped and Heatreated AA 1050 Aluminum Alloy Sheet (심한 전단변형(ECAP)과 열처리한 알루미늄 AA 1050 합금 판재의 소성변형비와 집합조직)

  • Akramov Saidmurod;Lee M. K.;Kim I.;Park B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • A study on the microstructure and the texture of the samples after ECAP and subsequent heat treatment has been carried out. The specimens after ECAP showed a very fine grain size, a decrease of <100> // ND, and an increase of <111> // ND textures. The $\{111\}<112>,\;\{123\}<634>,\;\{110\}<001>,\;\{112\}<111>,\;\{110\}<111>,\;and\;\{013\}<231>$ texture components were increased in the specimens after the ECAP and subsequent heat-treatment at $400^{\circ}C$ for 1 hour. One of the most important properties in sheet metals is formability. The r-value or plastic strain ratio has been used as a parameter that expresses the formability of sheet metals. The change of the plastic strain ratios after the ECAP and subsequent heat-treatment conditions has been investigated and it was found that they were two times higher than those of the initial Al sheets. This could be attributed to the formation above texture components through the ECAP and subsequent heat-treatment.

  • PDF

Translucency and Color Stability of Various Core Ceramics for All-Ceramic Restoration (전부도재수복물을 위한 수종의 코어 세라믹의 반투명도 및 색 안정성)

  • Oh, Sang-Chun;Lee, Hae-Hyoung;Shin, Mee-Ran;Park, Kwang-Su
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.157-170
    • /
    • 2007
  • Purpose: This investigation was designed to determine the translucency and color stability of various core ceramics for all-ceramic restoration using the CIE $L^*a^*b^*$ system. Material and Methods: IPS e.max Press ceramic(Ivoclar-Vivadent, Liechtenstein), $LAVA^{TM}$ All Ceramic(3M-Espe, Germany), Cercon Smart Ceramic(Dentsply, Germany), and Z-match Ceramic(DentAim, Korea) were used for this study. For the specimens of zirconia oxide ceramics, the as-sintered cylindrical blanks($11.0{\times}25.0mm$) were machined into the shape of a disk(0.4, 0.8, 1.5 mm in thickness, 10 mm in diameters) with a diamond grind machine. The IPS e.max Press specimens ($0.8{\times}10mm$) were fabricated using the "lost wax" technique. CIE $L^*a^*b^*$ coordinates and light transmission were recorded for each specimen with a spectrophotometer(CM-2600d, Minolta, Japan). Color differences were calculated using the equation, ${\Delta}E^*ab=[({\Delta}L^*)2+({\Delta}a^*)2+({\Delta}b^*)2]1/2$. Results: The results were obtained as follows: 1. The most translucent group was IPS e.max Press ceramic that is a glass-ceramic, and $Lava^{TM}$ and Z-match ceramic were more translucent than Cercon Smart ceramic in zirconia ceramic group. 2. In the all groups, there was no significant translucent change after 6 times heat-treatments required to make a final restoration. 3. Colored zirconia was showed more yellowish and dark than uncolored zirconia. 4. After heat-pressing, IPS e.max Press ceramic was showed high ${\Delta}E^*ab$ value(4.1 of eM1, 6.8 of eM2) that means to be more whiter than before heat-pressing. However, there was no color change after additive heat treatments for final restoration. 5. In the colored zirconia groups, there was no significant color change after some heat-treatments required to make a final restoration.

Phase Transformation During Hot Consolidation and Heat Treatments in Mechanically Alloyed Iron Silicide (기계적 합금화 Iron Silicide의 열간성형 및 열처리에 의한 상변화)

  • Eo, Sun-Cheol;Kim, Il-Ho;Hwang, Seung-Jun;Jo, Gyeong-Won;Choe, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1068-1073
    • /
    • 2001
  • An n-type iron$silicide(Fe_{0.98}Co_{0.02}Si_2)$has been produced by mechanical alloying process and consolidated by vacuum hot pressing. Although as-milled powders after 120 hours of milling did not show an alloying progress,${\beta}-FeSi_2$phase transformation was induced by isothermal annealing at$830{\circ}C$for 1 hour, and the fully transformed${\beta}-FeSi_2$phase was obtained after 4 hours of annealing. Near fully dense specimen was obtained after vacuum hot pressing at$ 1100{\circ}C$with a stress of 60MPa. However, as-consolidated iron silicides were consisted of untransformed mixture of ${\Alpha}-Fe_2Si_5$and ${\varepsilon-FeSi$phases. Thus, isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting${\beta}-FeSi_2$phase. The condition for${\beta}-FeSi_2$transformation was investigated by utilizing DTA, SEM, and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at$830{\circ}C$and the transformation behaviour was investigated as a function of annealing time. The mechanical properties of${\beta}-FeSi_2$materials before and after isothermal annealing were characterized in this study.

  • PDF

Cold Isostatic Pressing and Sintering Behavior of (Al +12.5%Cu)3Zr Nanocrystalline Intermetallic Compound Synthesized by Mechanical Alloying (기계적합금화한 (Al +12.5%Cu)3Zr 초미립 금속간화합물의 CIP 성형 및 소결 거동)

  • Moon, H.G.;Hong, K.T.;Kim, S.J.
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.634-640
    • /
    • 2002
  • To improve the ductility of mTEX>$(Al +12.5%Cu)<_3$Zr intermetallics, which are the potential high temperature structural materials, the mechanical alloying behavior, the effect of pressure and temperature on the $Ll_2$, phase formation and the behavior of the cold isostatic press and sintering were investigated. However mechanically alloyed A1$_3$Zr alloy have been known to have high mechanical strength even at high temperature, its workability was poor. A method of solution is refined grain size and phase transformation from $DO_{23}$ to $Ll_2$.$ Ll_2$ structure TEX>$(Al+12.5%Cu)<_3$Zr with nanocrystalline microstructure intermetallic powders where were prepared by mechanical alloying of elemental powders. Grain sizes of the as milled powders were less than 10nm (from transmission electron microscopy, TEM). Thermal analyses showed that $Ll_2$ structure was stable up to$ 800^{\circ}C$ for 1hour $(Al+ 12.5%Cu)<_3$Zr. $(Al+12.5%Cu)<_3$Zr has been consolidated by cold isostatic pressing (CIP 138, 207, 276, 414MPa) at room temperature and subsequent heat treatment at high temperatures where $Ll_2$ structure was stable under vacuum atmosphere. The results showed that 94.2% density of Ll$_2$ compacts was obtained for the (Al +12.5%Cu)$_3$Zr by sintering at 80$0^{\circ}C$ for 1hour (under CIPed 207MPa). This compact of the grain size was 40nm.

Effects of Hot Isostatic Pressing on the Microstructure and High-Temperature Fatigue Life of the Ni-base Superalloy IN738LC (IN738LC 초내열합금에서 미세조직과 고온 피로수명에 미치는 고온등압압축(HIP) 공정의 영향)

  • Choi, Cheol;Kim, Doo-Soo;Lee, Young-Chan;Park, Young-Kyu;Kim, Gil-Moo;Kim, Jae-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.128-137
    • /
    • 2000
  • A study has been made to investigate the effects of hot isostatic pressing(HIPing) on the microstructure and high temperature fatigue lives of the IN738LC, Ni-base superalloy used in turbine blades, with emphasis on the elimination of casting microporosity and fatigue damage through HIP treatments. Microstructure was observed using OM, SEM and the fatigue life was investigated with rotate bending fatigue tester. The results show that the fatigue lives of properly HIP-processed specimens could be extended be extended by a factor of about sixty. In contrast, no comparable life improvement was achieved with heat treatment only. The repetitive HIP treatment was shown to be very effective as a means of rejuvenating the fatigue life of intentionally fatigue-damaged IN738LC by restoration of the initial alloy microstructure and additional removal of fine casting defects which remained in the HIP-processed material.

  • PDF

Preparation of Self-reinforced Silicon Carbide Ceramics by Hot Pressing (가압소결에 의한 자체강화 탄화규소 세라믹스의 제조)

  • Park, Jong-Gon;Lee, Jong-Kook;Seo, Dong-Seok;Kim, Min-Jeong;Lee, Eun-Gu;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1356-1363
    • /
    • 1999
  • Self-reinforced silicon carbide was prepared by hot pressing and the control of starting phases of raw materials and its microstructural characteristics was investigated. The specimens with self-reinforced microstructure were obtained from the compacts with mixed compositions of ${\alpha}$-and ${\beta}$-SiC powders. Self-reinforced microstructure which is composed of large dispersed grains with rod-like shape and matrix with small equiaxed grains was formed by the transformation to the ${\alpha}$-SiC with 4H polytype for ${\beta}$-SiC and anisotropic grain growth during the heat treatment. Of all speimens the values of volume fraction maximum length and aspect ratio for large grains with rode-like types were the highest at the specimen with 50 vol% ${\beta}$-SiC in the starting SiC powder and therefore this specimen showed the highest fracture toughness due to the crack deflection by rod-like grains during crack propagation.

  • PDF

Microstructural Evolution of Cu-15 wt%Ag Composites Processed by Equal Channel Angular Pressing (등통로각압축공정을 이용하여 제조된 Cu-15 wt%Ag 복합재의 미세구조)

  • Lee, In Ho;Hong, Sun Ig;Lee, Kap Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.931-937
    • /
    • 2012
  • The microstructure of Cu-15 wt%Ag composites fabricated by equal channel angular pressing (ECAP) with intermediate heat treatment at $320^{\circ}C$ was investigated by transmission electron microscopy (TEM) observations. Ag precipitates with a thickness of 20-40 nm were observed in the eutectic region of the Cu-15 wt%Ag composite solution treated at $700^{\circ}C$ before ECAP. The Cu matrix and Ag precipitates had a cube on cube orientation relationship. ECAPed composites exhibited ultrafine-grained microstructures with the shape and distribution dependent on the processing routes. For route A in which the sample was pressed without rotation between each pass, the Cu and Ag grains were elongated along the shear direction and many micro-twins were observed in elongated Cu grains as well as in Ag filaments. The steps were observed on coherent twin boundaries in Cu grains. For route Bc in which the sample was rotated by 90 degrees after each pass, a subgrain structure with misorientation of 2-4 degree by fragmentation of the large Cu grains were observed. For route C in which the sample was rotated by 180 degrees after each pass, the microstructure was similar to that of the route A sample. However, the thickness of the elongated grains along the shear direction was wider than that of the route A sample and the twin density was lower than the route A sample. It was found that more microtwins were formed in ECAPed Cu-15 wt%Ag than in the drawn sample. Grain boundaries were observed in relatively thick and long Ag filaments in Cu-15 wt%Ag ECAPed by route C, indicating the multi-crystalline nature of Ag filaments.

Effect of Hot Isostatic Pressing on the Stellite 6 Alloy prepared by Directed Energy Deposition (DED 적층 제조된 Stellite 6 조성합금의 열간등방압성형 후처리 )

  • Joowon Suh;Jae Hyeon Koh;Young-Bum Chun;Young Do Kim;Jinsung Jang;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.152-162
    • /
    • 2024
  • The directed energy deposited (DED) alloys show higher hardness values than the welded alloys due to the finer microstructure following the high cooling rate. However, defects such as microcracks, pores, and the residual stress are remained within the DED alloy. These defects deteriorate the wear behavior so post-processing such as heat treatment and hot isostatic pressing (HIP) are applied to DED alloys to reduce the defects. HIP was chosen in this study because the high pressure and temperature uniformly reduced the defects. The HIP is processed at 1150℃ under 100 MPa for 4 hours. After HIP, microcracks are disappeared and porosity is reduced by 86.9%. Carbides are spherodized due to the interdiffusion of Cr and C between the dendrite and interdendrite region. After HIP, the nanohardness (GPa) of carbides increased from 11.1 to 12, and the Co matrix decreased from 8.8 to 7.9. Vickers hardness (HV) decreased by 18.9 % after HIP. The dislocation density (10-2/m2) decreased from 7.34 to 0.34 and the residual stress (MPa) changed from tensile 79 to a compressive -246 by HIP. This study indicates that HIP is effective in reducing defects, and the HIP DED Stellite 6 exhibits a higher HV than welded Stellite 6.

Flame Retardant Properties of Basalt Fiber Reinforced Epoxy Composite with Inorganic Fillers (무기 필러가 첨가된 현무암섬유 강화 에폭시 복합재료의 난연 특성)

  • Mun, So Youn;Lee, Su Yeon;Lim, Hyung Mi
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • Basalt fiber reinforced epoxy composites with inorganic filler (BFRP-F) such as Mg(OH)2 (magnesium hydroxide), Al(OH)3 (aluminum hydroxide), Al2O3 (aluminum oxide) and AlOOH (boehmite) were prepared by hand lay-up and hot pressing. The combustive properties of BFRP-F were improved comparing with basalt fiber reinforced epoxy composite (BFRP) without inorganic filler. At a 30 wt% resin content, the limited oxygen index (LOI) of BFRP is 28.9, which is higher than that of epoxy (21.4), and the LOI of BFRP-F is higher than that of BFRP. The BFRP-F showed the lower peak heat release rate (PHRR), total heat release (THR) and total smoke release rate (TSR) than those of BFRP. We confirmed that the flame retardant properties of the composite were improved by the addition of inorganic filler through the dehydration reaction and oxide film formation.

Fabrication and Characterization of Carbon Fiber Reinforced (탄소섬유강화 유리복합재료의 제조 및 특성분석)

  • Cho, H.S.;Kim, S.D.;Cho, H.J.;Kong, S.S.;Choi, W.B.;Baek, Y.K.;Kim, H.J.;Kim, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.601-608
    • /
    • 1992
  • We investigated the influence of several processes, including the preparation of slurry and preform and the heat-treatment of the preform, on the properties of composites to fabricate the carbon-fiber reinforced glass composites having good mechanical properties. Cerander was determined to be the best binder among Cerander, Rhoplex and Elvacite 2045 by the dipping test and the binder within a preform could be completely eliminatd by burning out the specimen under 10-6 Torr at 400$^{\circ}C$ for more than 1h. The fracture behavior of a composite was largely dependent on the uniformity of carbon-fiber distribution within the composite and the heat-treatment condition of the composite. The higher the glass content, the more difficult to obtain uniform distribution of carbon-fiber. As the hot-pressing temperature increased, the densification process of the composite and the formation of pore due to oxidation of carbon fiber occurred competitively. But, above 1000$^{\circ}C$ the latter played a predominant role. We could fabricated the densest 15 vol.% carbon-fiber-content glass composite having the highest toughness and flexural strength of 250 MPa by hot-pressing under 15 MPa at 900$^{\circ}C$ for 30 min.

  • PDF