DOI QR코드

DOI QR Code

Effect of Hot Isostatic Pressing on the Stellite 6 Alloy prepared by Directed Energy Deposition

DED 적층 제조된 Stellite 6 조성합금의 열간등방압성형 후처리

  • Joowon Suh (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Jae Hyeon Koh (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Young-Bum Chun (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Young Do Kim (Division of Materials Science and Engineering, Hanyang University) ;
  • Jinsung Jang (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Suk Hoon Kang (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Heung Nam Han (Department of Materials Science and Engineering & Research Institute of Advanced Materials, Seoul National University)
  • 서주원 (한국원자력연구원 재료안전기술연구부) ;
  • 고재현 (한국원자력연구원 재료안전기술연구부) ;
  • 천영범 (한국원자력연구원 재료안전기술연구부) ;
  • 김영도 (한양대학교 신소재공학부) ;
  • 장진성 (한국원자력연구원 재료안전기술연구부) ;
  • 강석훈 (한국원자력연구원 재료안전기술연구부) ;
  • 한흥남 (서울대학교 재료공학부)
  • Received : 2024.04.15
  • Accepted : 2024.04.24
  • Published : 2024.04.28

Abstract

The directed energy deposited (DED) alloys show higher hardness values than the welded alloys due to the finer microstructure following the high cooling rate. However, defects such as microcracks, pores, and the residual stress are remained within the DED alloy. These defects deteriorate the wear behavior so post-processing such as heat treatment and hot isostatic pressing (HIP) are applied to DED alloys to reduce the defects. HIP was chosen in this study because the high pressure and temperature uniformly reduced the defects. The HIP is processed at 1150℃ under 100 MPa for 4 hours. After HIP, microcracks are disappeared and porosity is reduced by 86.9%. Carbides are spherodized due to the interdiffusion of Cr and C between the dendrite and interdendrite region. After HIP, the nanohardness (GPa) of carbides increased from 11.1 to 12, and the Co matrix decreased from 8.8 to 7.9. Vickers hardness (HV) decreased by 18.9 % after HIP. The dislocation density (10-2/m2) decreased from 7.34 to 0.34 and the residual stress (MPa) changed from tensile 79 to a compressive -246 by HIP. This study indicates that HIP is effective in reducing defects, and the HIP DED Stellite 6 exhibits a higher HV than welded Stellite 6.

Keywords

Acknowledgement

이 연구는 한국원자력연구원 기본사업(524590-24)의 지원 하에 수행되었습니다.

References

  1. E. Lemaire, M. Le Calvar: Wear., 249 (2001) 338. 
  2. D. Svetlizky, M. Das, B. Zheng, A. L. Vyatskikh, S. Bose, A. Bandyopadhyay, ... & N. Eliaz: Mater. Today., 49 (2021) 271. 
  3. M. Ma, Z. Wang, & X. Zeng: Mater. Charact., 106 (2015) 420. 
  4. J. O. Milewski: Additive manufacturing of metals, Springer Cham. Vol. 258, Switzerland (2017). 
  5. P. Mercelis, & J. P. Kruth: Rapid Prototyp. J., 12 (2006) 254. 
  6. T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, ... & W. Zhang: Prog. Mater. Sci., 92 (2018) 112. 
  7. D. L. Bourell, W. E. Frazier, H. A. Kuhn, & M. Seifi (Eds.): ASM Handbook: Additive Manufacturing Processes, ASM International, Almere, (2020). 
  8. S. Raghavendra, P. Jayashree, D. A. Rita, G. Piras, D. Scheider, M. Chemello, & M. Benedetti: Addit. Manuf. Lett., 6 (2023) 100136.  https://doi.org/10.1016/j.addlet.2023.100136
  9. A. Amanov, R. Karimbaev, C. Li, & M. A. Wahab: Surf. Coat. Technol., 454 (2023) 129175. 
  10. T. Fischer, B. Kuhn, D. Rieck, A. Schulz, R. Trieglaff, & M. B. Wilms: Appl. Sci., 10 (2020) 5556. 
  11. H. V. Atkinson, & S. Davies: Metall. Mater. Trans. A., 31 (2000) 2981. 
  12. ASTM, E. 384: Standard Test Method for Micro Indentation Hardness of Materials, ASTM International, West Conshohocken (1999). 
  13. P. S. Prevey: ASM Handbook. ASM International, Almere, 10 (1986) 384. 
  14. L. Baiamonte, M. Tului, C. Bartuli, D. Marini, A. Marino, F. Menchetti, ... & F. Marra: Surf. Coat. Technol., 371 (2019) 322. 
  15. R. Ahmed, H. L. de Villiers Lovelock, & S. Davies: Wear., 466 (2021) 203533. 
  16. V. A. Alza: IOSR-JMCE., 18 (2021) 63. 
  17. K. Yang, J. S. Zhang, X. M. Zong, W. Liu, & C. X. Xu: Acta Metall. Sin. (Engl. Lett.)., 30 (2017) 464.  https://doi.org/10.1007/s40195-016-0520-0
  18. W. Dudzinski, J. P. Morniroli, & M. Gantois: J. Mater. Sci., 15 (1980) 1387. 
  19. A. Farnia, F. M. Ghaini, J. C. Rao, V. Ocelik, & J. T. M. De Hosson: Surf. Coat. Technol., 213 (2012) 281. 
  20. K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, T. Koziel, & L. Gondek: J. Alloys Compd., 698 (2017) 673. 
  21. L. Li, M. Chen, W. Li, B. Wang, J. Jiang, & X. Zang: Appl. Phys. A., 127 (2021) 1. 
  22. H. Zhang, A. Wang, Z. Wen, Z. Yue, & C. Zhang: High Temp. Mater. Process., 35 (2016) 465. 
  23. A. Mostafa, I. Picazo Rubio, V. Brailovski, M. Jahazi, & M. Medraj: Metals., 196 (2017) 196. 
  24. B. Geng, Z. Liu, Y. Li, G. Wang, & R. Zhou: Mater. Charact., 191 (2022) 112117. 
  25. B. Geng, P. Deng, Y. Li, & J. Hu: J. Alloys Compd., 968 (2023) 172276. 
  26. P. Bindu, & S. Thomas: J. Theor. Appl. Phys., 8 (2014) 123.
  27. M. Saleem, L. Fang, H. B. Ruan, F. Wu, Q. L. Huang, C. L. Xu, & C. Y. Kong: Int. J. Phys. Sci., 7 (2012) 2971. 
  28. Z. R. Khan, M. Zulfequar, & M. S. Khan: Mater. Sci. Eng. B., 174 (2010) 145.  https://doi.org/10.1016/j.mseb.2010.03.006
  29. M. Andurkar, T. Suzuki, M. Omori, B. Prorok, J. Gahl, & S. Thompson: In 2021 International Solid Freeform Fabrication Symposium. University of Texas at Austin (2021) 1049. 
  30. C. Ye, C. Zhang, J. Zhao, & Y. Dong: J. Mater. Eng. Perform., 30 (2021) 6407. 
  31. A. K. Singla, M. Banerjee, A. Sharma, J. Singh, A. Bansal, M. K. Gupta, ... & D. K. Goyal: J. Manuf. Process., 64 (2021) 161. 
  32. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, & W. Huang: Opt. Laser Technol., 43 (2011) 208. 
  33. X. Cao, X. Xu, C. Wang, Y. Pyoun, & Q. Wang: Metals., 7 (2017) 440. 
  34. R. Liu, S. Yuan, N. Lin, Q. Zeng, Z. Wang, & Y. Wu: J. Mater. Res. Technol., 11 (2021) 351.  https://doi.org/10.1016/j.jmrt.2021.01.013
  35. A. Tiziani, L. Giordano, P. Matteazzi, & B. Badan: Mater. Sci. Eng., 88 (1987) 171. 
  36. G. R. Mirshekari, S. Daee, S. F. Bonabi, M. R. Tavakoli, A. Shafyei, & M. Safaei: Surf. Interfaces., 9 (2017) 79.