• Title/Summary/Keyword: Hot isostatic pressing

Search Result 87, Processing Time 0.028 seconds

Near-net-shape forming of ceramic powder under hot pressing and hot isostatic pressing (가압소결과 열간 등가압소결에 의한 세라믹 분말의 정형 성형)

  • Kwon, Yeong-Sam;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • High temperature densification behaviors of alumina powder compacts were investigated under hot pressing and hot isostatic pressing. An alumina part of valve-head shape was fabricated under hot pressing and its forming process was simulated by finite element calculation. an alumina powder compact encapsulated by a stainless steel container was also densified under hot isostatic pressing. Inhomogeneous deformations during hot isostatic pressing due to the canning effect were observed experimentally and predicted by finite element analysis.

Optimal Shape Design of a Container Under Hot Isostatic Pressing by a Finite Element Method (열간등가압소결 공정에서 유한요소법을 이용한 컨테이너 형상의 최적설계)

  • Jeong, Seok-Hwan;Park, Hwan;Jeon, Gyeong-Dal;Kim, Gi-Tae;Hwang, Sang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2211-2219
    • /
    • 2000
  • Near net shape forming of 316L stainless steel powder was investigated under hot isostatic pressing. To simulate densification and deformation of a powder compact in a container during hot isostatic pressing, the constitutive model of Abouaf and co-workers was implemented into a finite element analysis. An optimal design technique based on the design sensitivity was applied to the container design during hot isostatic pressing. The optimal shape of the container was predicted from the desired final shape of a powder compact by iterative calculations. Experimental data of 316L stainless steel powder showed that the optimally designed container allowed precise forming of the desired powder compact during hot isostatic pressing.

Densification Behavior of Mixed Metal Powders under High Temperature (혼합 금속 분말의 고온 치밀화 거동)

  • Jo, Jin-Ho;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.735-742
    • /
    • 2000
  • Densification behaviors of mixed metal powder under high temperature were investigated. Experimental data of mixed copper and tool steel powder with various volume fractions of Cu powder were obtained under hot isostatic pressing and hot pressing. By mixing the creep potentials of McMeeking and co-workers and of Abouaf and co-workers originally for pure powder, the mixed creep potentials with various volume fractions of Cu powder were employed in the constitutive models. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densification of mixed powder under hot isostatic pressing and hot pressing. Finite element calculations by using the creep potentials of Abouaf and co-workers agreed reasonably well with experimental data, however, those by McMeeking and co-workers underestimate experimental data as observed in the case of pure metal powders.

Effect of Ceramic Ball Inclusion on Densification of Metal Powder Compact (삽입된 세라믹 볼이 금속분말성형체의 치밀화에 미치는 영향)

  • Park, Hwan;Yu, Yo-Han;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.29-37
    • /
    • 2000
  • The effect of a ceramic ball inclusion on densification behavior of a metal powder compact was investigated under cold isostatic pressing, pressureless sintering and hot isostatic pressing. To simulate those processes, proper constitutive models were implemented into a finite element program (ABAQUS). Measured density distributions of metal powder compacts were also compared with finite element results and showed the same trend with simulated results. Residual stress distributions were calculated by finite element analysis to study the effect of ceramic ball inclusions with different thermal expansion coefficients. The higher residual stress was observed in a metal powder compact when the difference between thermal expansion coefficients for a ceramic ball and metal powder became larger. Samples produced by Wing showed more uniform density distributions and lower residual stresses compared to those by sintering after cold isostatic pressing. For various sizes of ceramic ball inclusions, densification and deformation of powder compacts were also studied during hot isostatic pressing.

Densification Behavior of Ti-6Al-4V Power Compacts by Hot Isostatic Pressing (열간 등가압 소결에 의한 Ti-6Al-4V 분말의 치밀화 거동)

  • Yang, Hun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.394-402
    • /
    • 2000
  • Densification behavior of titanium alloy powder was investigated under hot isostatic pressing at various pressures and temperatures. Uniaxial creep responses of a dense specimen were also obtained at high temperatures. The densification model of Abouaf and co-workers was implemented into a Finite element program (ABAQUS) to compare with experimental data for titanium alloy powder. The agreements between finite element calculations and experimental data for deformation and densification of titanium alloy powder were good during hot isostatic pressing.

Capsule Free Hot Isostatic Pressing of Ceria-Doped Tetragonal Zirconia Powder Crystallized in Supercritical Methanol

  • Shu Yin;Satoshi Uehida;Yoshinobu Fujishiro;Mamoru Ohmori;Tsugio Sato
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.73-77
    • /
    • 1999
  • Capsule free hot isostatic pressing (HIPing) of 12 mol% $CeO_2-88 mo% ZrO_2 (12CeO_2-88ZrO_2)$ powder was conducted at 1100~$1200^{\circ}C$ using the powder crystallized in supercritical methanol followed by supercritical drying. Porous $12CeO_2-88ZrO_2$ ceramics with ~35% open porosity, micropore diameter of ~23 nm and a narrow pore size distribution were fabricated by capsule free hot isostatic pressing at $1100^{\circ}C$. The porosity increased with decrease in HIPing temperature and was accompanied by a steady decrease in fracture strength.

  • PDF

Densification behavior and grain growth of zirconia powder compacts at high temperature (지르코니아 분말 성형체의 고온 치밀화 거동과 결정립 성장)

  • Kim, H.G;Kim, K.T
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1175-1187
    • /
    • 1997
  • Densification behavior and grain growth of zirconia powder compacts are investigated under high temperature. Experimental data are obtained for zirconia powder under pressureless sintering, sinter forging and hot isostatic pressing. The constitutive equations by Kwon et al. are used for diffusional creep and grain growth. The constitutive equations by McMeeking and co-workers are also included to study the effect of power-law creep. These constitutive equations are implemented into a finite element program (ABAQUS) to investigate the friction effect during sinter forging and the canning effect during hot isostatic pressing. The agreements between experimental data and finite element results are very good in pressureless sintering and hot isostatic pressing, but not as good in sinter forging.

The Effect of Hot Isostatic Pressing on Mechanical Properties of Cast Aluminum Alloy (주조된 AI 합금의 기계적 성질에 미치는 HIP의 영향)

  • Kim, Gi-Tae;Yang, Hun-Cheol;Choe, Jae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.461-470
    • /
    • 2002
  • The present paper investigates the effect of hot isostatic pressing (HIPing) on mechanical properties, e.g., tensile strength, ductility and impact absorption energy of sand and die casted aluminum alloys. After HIPing at various temperatures and pressure conditions, uniaxial tensile test and Izod impact test of the samples were carried out. The experimental results showed improvements in uniaxial tensile strength, elongation and Izod impact toughness of sand casted aluminum alloy, while deterioration of a tensile strength fur die casted aluminum alloy. The effect of HIPing for microstructure of the cast aluminum alloy was also investigated.

A Finite Element Analysis for Densification Behavior and Grain Growth of Tool Dteel Powder Compacts (공구강 분말 성형체의 치밀화 거동과 결정립 성장에 관한 유한 요소 해석)

  • 전윤철
    • Journal of Powder Materials
    • /
    • v.4 no.2
    • /
    • pp.90-99
    • /
    • 1997
  • Densification behavior and grain growth of tool steel powder compacts during pressureless sintering, sinter forging, and hot isostatic pressing were investigated. Experimental data were compared with results of finite element calculations by using the constitutive model of Abouaf and co-workers and that of McMeeking and co-workers. Densification and deformation of tool steel powder compacts were studied by implementing power-law creep, diffusional creep, and grain growth into the finite element analysis. The shape change of a powder compact in the container during hot isostatic pressing was also studied. The theoretical models did not agree well with experimental data in sinter forging, however, agreed well with experimental data in hot isostatic pressing.

  • PDF