• Title/Summary/Keyword: heat pipe heat exchanger

Search Result 236, Processing Time 0.032 seconds

A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 성능에 영향을 미치는 인자에 관한 연구)

  • Yoo Seong-Yeon;Chung Min-Ho;Lee Yong-Moon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.839-848
    • /
    • 2005
  • Plastic plate heat exchangers have many advantages over the conventional heat exchangers such as aluminum plate heat exchangers, rotary wheel heat exchangers and heat pipe heat exchangers which have been used for ventilation heat recovery in the air-conditioning systems. In the present study, pressure drop and heat transfer characteristics of plastic plate heat exchangers are investigated for various design parameters and operating conditions which affect the performance of the plastic plate heat exchangers. In flat plate type heat exchanger, material thickness and channel height of heat exchanger are considered, and corrugate size and heat transfer area are considered in case of corrugate type heat exchanger. Pressure drop and effectiveness of the corrugate type heat exchanger increase as the corrugate size decreases.

Performance Test of a Multi-riser Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery (연도가스 열회수용 다관형 순환유동층 열교환기 성능실험)

  • 전용두;이금배
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-279
    • /
    • 2004
  • A lab-scale fluidized bed heat exchanger for waste gas heat recovery is devised and tested. Compared to our previous works on fluidized bed type system with a single riser, the present heat exchanger system is featured by its multiple (four) risers to handle increased amount of exhaust gas. Particles are introduced to the main hot gas stream alongside the pipe circumference near riser inlets. The heat exchanger performance and pressure drop are evaluated through experiments for the present gas-to-water heat exchanger system.

Performance Analysis of Ground Thermal Conductivity by Ground Heat Exchanger (지중열교환기의 지중열전도도 성능 분석)

  • Kim, Young-Jun;Choi, Jae-Sang;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.161-166
    • /
    • 2005
  • The objectives of this paper are to estimate the ground thermal conductivity by ground heat exchangers in two different places - Chooncheon and Wonjoo, and to analyze the effect of ground thermal conductivity on the ground thermal diffusivity and the size of the ground heat exchanger. In Chooncheon area, a single-U type HDPE pipe (25mm diameter) with borehole diameter of 150mm, length of 150m is installed. In Wonjoo area, a single-U type HDPE pipe (40mm diameter) with borehole diameter 150mm, length of 200m is installed. It is found that the ground thermal conductivities are estimated as 2.69 $W/m^{\circ}C$ and 2.99 $W/m^{\circ}C$ in Chooncheon and Wonjoo, respectively. It is also found that the ground heat exchanger size is reduced by 8.6% with 25% increase of ground thermal conductivity, and increase by 11.8% with 25% decrease of ground thermal conductivity.

  • PDF

Preliminary Analysis on Design Parameters and Application Effects of Surface Water Heat Exchanger (SWHE) (지표수 열교환기 설계 변수와 적용 효과에 대한 선행 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.24-32
    • /
    • 2016
  • Commercial buildings and institutions are generally cooling-dominated and therefore reject more heat to a borehole ground heat exchanger (BHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of BHE. This paper presents the analysis results of the impact of design parameters on the length of SWHE pipe and its application effect on geothermal heat pump (GHP) system using BHE. In order to analysis, we applied ${\varepsilon}-NTU$ method on designing the length of SWHE pipe. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of BHE was more stable than that of standalone BHE system.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

Study on Simulation of Cooling Water through Concentric Double Pipe Heat Exchanger (Concentric Double Pipe 열교환기에서 냉각수 급랭 현상의 모사에 대한 연구)

  • ANCHEOL CHOI;SEONGWOO LEE;IK HO SHIN;SUNGWOONG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.741-747
    • /
    • 2023
  • In this study, the heat transfer characteristics were numerically analyzed to investigate the possibility of utilizing cooling water using liquid nitrogen. From the study, as the mass flow rate of the hot fluid increased, the heat transfer rate increased by 8.9-81.7%. And lowering the inlet temperature of the hot fluid resulted in increase in the heat transfer rate by 33.8-71.5%. As for the filling level of liquid nitrogen, as higher filling level led to a decrease in the outlet temperature and an increase in the overall heat transfer coefficient.

Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse (히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin (휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.69-73
    • /
    • 2013
  • Internal heat exchanger (IHX) apparatus using the temperature difference between high and low pressure lines in vehicle air conditioning system is a good method to enhance the cooling performance. In this study, we designed various double-pipe internal heat exchangers which have inner fins between the internal pipe and external pipe. We also measured the performance characteristic (pressure drop, cooling capacity, compressor work and coefficient of performance (COP)) of the modified internal heat exchangers that had the change of the fin height and the inside shape of the internal pipe. This experimental results indicated that the liner and serration type internal heat exchanger was the best cooling performance. In addition, the air conditioning system with the liner and serration type internal heat exchanger showed the improved performances of about 6.4% and 9.2%, respectively, for the cooling capacity and COP.

Experimental Study of Thermal Performance of Heat Pipe with Axial Trapezoidal Grooves (축방향 사다리꼴 그루브 히트파이프의 열성능에 대한 실험적 연구)

  • Suh, Jeong-Se;Lee, Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2003
  • Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves. 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations fur heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases. the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment.