• Title/Summary/Keyword: heat of hydration in concrete

Search Result 540, Processing Time 0.026 seconds

An Experimental Study on the Influence of High Fineness Fly Ash and Water-Binder Ratio on Properties of Concrete (콘크리트 특성에 미치는 고분말도 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Seung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • Recently, the press and institute recognized fly ash as it had excellent performance. Its research and applications are on the rise largely as a substitute for cement. On the contrary, it is in a situation that the regulation of high fineness fly ash remains at a low level. As for the fly ash in $3,000{\sim}4,500\;cm^2/g$ class fineness regulated in KS L 5405, it is used by substituting it around the unit weight of cement 20%. Accordingly, the regulation in upper classification is in a situation of being insufficient. Therefore, this study aimed to establish 4000, 6000, and 8000 class of fineness of fly ash and three levels of substitute like 15%, 30%, and 45% in order to analyze the substitute and effect of water-binder ratio for fly ash that affected the properties of ternary system concrete. As a result of experiment by planning water-binder ratio for two levels like 40% and 50%, the more replacement ratio and fineness of fly ash increased in the performance not hardened, the more the fluidity increased. This study has found out that the air content decreased, and that there was setting acceleration and it decreased the heat of hydration. In addition, as for the strength properties in a state of performance hardened concrete, the more the replacement ratio and the ratio of water-binding materials increased, the more it had a tendency of being decreased.

Numerical analysis of temperature and stress distributions in a prestressed concrete slab with pipe cooling (파이프쿨링을 실시한 대형 프리스트레스트 콘크리트 슬래브의 수화열 해석)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.275-280
    • /
    • 1999
  • It was analysed the effect of pipe cooling as a measure to avoid thermal cracks due to the heat of hydration during the curing process of a massive prestressed concrete (PSC) slab. PSC slab has a complex three-dimensional shape of which the maximal and minimal thicknesses of cross-section were 2.8 and 0.95m, respectively. Steel pipes of which the diameter was 1 inch were employed for cooling. The horizontal and vertical distances between the contiguous pipes were 0.5 and 0.6m, respectively. One the four layers of cooling pipe were arranged according to the thickness of cross-section. Temperature distribution was calculated by the program developed by the authors, of which the accuracy was verified on a few published papers by the authors. Based on the temperature analysis of the cross-section which had four layers of cooing pipe, the maximum temperature of concrete interior was 54.2$^{\circ}C$ and the maximum differenced between the interior and surface temperatures of concrete was 14.$0^{\circ}C$ and, thereby, the thermal cracking index was 1.1. Upon the stress analysis, the thermal cracking index was 0.92 and the probability of thermal-crack development was 52%. Therefore, it was expected to make it possible to reduce the probability of thermal-crack development in a massive PSC slab by adopting pipe cooling.

  • PDF

An Advanced Assessment Strategy of Thermal Cracks Induced by Hydration Heat and Internal Restraint (내부구속에 의한 수화열 균열의 개선된 평가 방법)

  • Jeon, Se-Jin;Choi, Myoung-Sung;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.677-685
    • /
    • 2006
  • Control of the temperature difference across a section is an effective strategy to minimize the hydration-heat-induced cracks for the structures where internal restraint is dominant. The domestic code, however, overestimates probability of the crack occurrence judging from the foreign codes and construction experiences of real structures. Therefore, the background of the equation presented in the domestic code was investigated step by step to examine validity of the equation, and, as a result, it was found that the equation is established on a basis of simple elastic model where the change of elastic modulus in an early age is not considered. An advanced assessment strategy was proposed taking into account the hypoelastic model which corresponds to an incremental constitutive equation. The presented procedure resulted in an increased crack index, i.e. decreased crack risk, the value of which depends on various conditions of the mix and structures. Also, a prediction equation of the temperature difference was proposed which can readily consider the effect of the curing condition and ambient temperature in a hand calculation. For further study, the assessment equation may be more classified to strictly consider the characteristics of the mix and structures if the analytical and experimental data are accumulated.

Temperature History of Concrete Corresponding to Various Bubble Sheets Layer and Curing Temperature (양생온도 변화 및 버블시트 두께변화에 따른 콘크리트의 온도이력특성)

  • Hong, Seak-Min;Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.21-25
    • /
    • 2008
  • In this paper, the temperature history and the strength development of concrete corresponded to various bubble sheets layer and curing temperature. Based on the results, In case of the test temperature of -5℃, concrete subject in the exposure condition, result in a frost damage at initial stage by a fall of below zero temperature. In case of the combination of PE film and non woven fabric was after 36 hour, and combination of bubble sheet over double, a tremendous insulating effect of bubble sheet over double is confirmed due to the temperature of concrete fall of below zero temperature after 60 hours. Meanwhile, regarding the -15℃ of temperature, special measure for insulation curing is necessary to secure stability against early frost damage because frost damage was not affected by the lapping thickness of bubble sheet subjected to severe cold weather condition.

  • PDF

Temperature and Compressive Strength of the Concrete According to the Types of Rapid Hardening Cements (조강성 시멘트 종류에 따른 콘크리트의 온도이력 및 압축강도 특성)

  • Kim, Sang-Min;Choi, Yoon-Ho;Hyun, Seung Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.100-101
    • /
    • 2020
  • In this study, the temperature history and compressive strength of the concretes according to the type of cement were measured and analyzed in comparison as part of the experiment on the material mixing side to reduce the hydration heat crack of the mat foundation constructed with mass concrete. As a result, the peak temperature and maximum temperature reach time of concrete using high rapid cement were shown to be similar to that of semi rapid cement. In particular, in compressive strength after three days, semi rapid cement was measured higher than that of concrete using high rapid cement. Therefore, if semi rapid cement is used in accordance with the site conditions, it is deemed possible to shorten the air due to reduction of temperature cracks and improvement of initial strength.

  • PDF

Study on the Properties of Field Applied Non-Curing Concrete in Winter Season (동절기 무양생 콘크리트의 현장적용 성능 평가에 관한 연구)

  • Yoo, Jo-Hyeong;Kim, Woo-Jae;Hong, Seok-Beom;Kim, Hyeong-Cheol;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • In the cold-weathering concrete construction, it is important to ensure stable strength development of concrete in a low temperature environment. In this study, Non-curing cement(NCC) using the classified high fineness cement and self-heating powder was investigated for stable strength development without curing in a low temperature environment (less than $0^{\circ}C$). The actual size Mock-Up tests by various cement type and curing condition are performed to evaluate the strength development and hydration heat of concrete.

The Properties of Temperature History of Concrete with Surface Insulating Material in Cold Weather Concreting (한중콘크리트 시공시 표면 단열재 변화에 따른 콘크리트의 온도이력 특성)

  • 문학용;신동안;김경민;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.7-11
    • /
    • 2003
  • This study investigate the hydration heat history with variation of surface insulating material in cold weather concreting. According to the results, the temperature of concrete lowers below zero in 24hours, so early frost damage occurs in the case of exposure and 1 fold bubble sheet, but the lowest temperature keeps above zero, so a adiabatic effect is very favorable in the case of double bubble sheet and 부직포. Compressive strength of core specimen at 7 and 28 days is highest In the case of double bubble sheet and 부직포. But, considering convenience of construction and economical efficiency, it is thought that the most effective surface insulating material is 1 fold bubble sheet +blanket.

  • PDF

An intelligent cooling control system for mitigating the cracking risks of mass concretes during bridge construction

  • Ruinan An;Peng Lin;Daoxiang Chen;Jianshu Ouyang;Zichang Li;Zheng Zhang;Yuanguang Liu
    • Advances in concrete construction
    • /
    • v.17 no.5
    • /
    • pp.257-271
    • /
    • 2024
  • During any construction involving mass concrete, it is crucial to control cracking during the placement and curing process. This study develops an intelligent cooling control system that regulates water temperature and flow based on concrete hydration heat, effectively preventing cracking in bridge construction. The system consists of hardware, a neural network-based control algorithm, and an information management system. An optimal cooling control strategy is proposed to dynamically regulate water flow and temperature, preventing cracking by utilizing real-time temperature data, target control curves, neural network algorithms, and cloud-based computing. The intelligent cooling control system has been successfully implemented in controlling cracking risks during bridge construction. It not only mitigates the risk but also provides a convenient management strategy for bridge construction projects. The optimal cooling control strategy ensures high accuracy and stability under unsupervised learning conditions. This intelligent cooling control system can be applied to similar constructions such as bridge, dam, and building that involve the use of mass concrete.

Effects of Portland Cement Characters and Working Temperature on the Physical Properties of Cement Mortars (시멘트의 특성과 사용 온도가 모르터의 물성에 미치는 영향)

  • 김원기;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.410-417
    • /
    • 2000
  • In this study the effects of specifics surface area of cement, addition amount of gypsum and substitution ratio of gypsum anhydrite ont he physical properties of cement mortars were investigated by measruements of setting time, flow, compressive strength and hydration heat evolution rate. The results showed that fluidity of mortars was increased by 40 wt.% of maximum flow change with the decreasing specific surface area of cement from 3,500$\textrm{cm}^2$/g to 3,300${\pm}$50$\textrm{cm}^2$/g and affected by the relationship between the cement and balancing between the chemical activityof cement and solubility of calcium sulfate are desirable to prevent the fluidity of concrete from decreasing by high temperature in summer season.

  • PDF

Plan IE Design Of Extradosed Bridge Supported by Single Plane Cables (일면지지식 Extradosed교의 계획 및 설계)

  • 이종대;이두화;권소진;김종수;손준상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.615-620
    • /
    • 2001
  • The aim of this paper is to open up a relatively new type in bridge engineering by introducing plan and design of extradosed bridge which is implemented in Sungnam-Janghowon T/K project. The topic encompasses parametric study including the behavior of the bridge relevant to the cable layout, the distance from pier table to the first cable's location, the height of pylon, the stiffness of cross section and wind vibration to ascertain sectional type of bridge and span length. For the purpose of the knowledge base presented here, the important feature of design is recommended such as modeling method, camber control, finite element analysis and heat hydration of pier table. We can verify the issue related to the characteristics of extradosed bridge as a result of study and design endeavor.

  • PDF