• Title/Summary/Keyword: heat of hydration in concrete

Search Result 540, Processing Time 0.03 seconds

A Study on the Effect of the Construction Conditions on a Thermal Crack of Mat Foundation (매트기초의 온도균열에 미치는 시공조건의 영향에 관한 연구)

  • Lee, Do-Bum;Kim, Hyo-Rak;Choi, Il-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.1-4
    • /
    • 2003
  • Recently, a structure has been larger and higher under the improvement of construction technique. So, a concrete constructions that a mat foundation thickness of structure is over 80cm have been many. Also, because of the reason high strength concrete, the matter of thermal crack have become an important task to be solved absolutely. In a cause a thermal crack occurrence, there used, mixture of concrete, construction and so forth. In this study, we executed temperature and stress analysis of mat foundation to know the effect the construction condition a thermal crack of mat foundation. And we evaluated quantitatively about the occurrence possibility of thermal crack using the hydration heat analysis program. By using of this analysis technique, will can control skilfully the quality of a mat foundation in advance.

  • PDF

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect (양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정)

  • Choi Myoung-Sung;Kim Yun-Yong;Woo Sang-Kyun;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.551-558
    • /
    • 2005
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.

An Experimental Study on the Characteristics of Strength in Mortar under High Temperature conditions in an Early Age (모르터 압축강도 특성에 영향을 미치는 고온이력에 관한 실험적 연구)

  • Kim Young Joo;Gong Min Ho;Song In Myung;Yang Dong Il;Paik Min Su;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.703-706
    • /
    • 2004
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of quality control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

An Experimental Study on the Influence of Types of Mineral Admixtures and Cement on the Properties of Ultra-High Strength Concrete (초고강도 콘크리트의 특성에 미치는 시멘트 종류 및 혼화재 종류의 영향에 관한 실험적 연구)

  • Kim Duk-Hyun;Kang Hoon;Lee Sang-Soo;Song Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.261-264
    • /
    • 2004
  • In this study, the experiment was carried out to investigate and analyze the strenth properties and flowability of ultra-high strength concrete accroding to types of mineral admixtures and cements. The main experimental variables were water/binder ratio $25.0\%$, water content $160kg/m^3$ and mineral admixtures such as fly ash, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows 1) In case of using admixtures, superplasticizer amount need more than plain concrete. 2) According to kinds of admixtures and cements, the viscosity of concrete show much difference. 3) The autogeneous shrinkage of ultra-high strength concrete is profitable that use admixture, and heat of hydration is desirable that apply considering countermeasure enough in the advance. 4) Meta kaolin is excellent in side but has viscosity enlargement efficiency a little. But, problem estimates that is not to make design strength to and $70N/mm^2$ if use mixing condition with water-binder ratio properly.

  • PDF

The Comparative Experimental Study of short and long-term Behavior of the Blended High-Fluidity Cement Concrete and Existing Nuclear Power Plant Structural Concrete (기존 원전용 콘크리트와 다성분계 고유동 콘크리트의 장·단기거동 비교 실험 연구)

  • Lee, Pyung-Suk;Kwon, Ki-Joo;Kim, Su-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.195-202
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

Temperature Control of Mass Concrete with low heat concrete mixtures (저발열 콘크리트 배합에 따른 매스콘크리트 온도 제어)

  • Park, Chan-Kyu;Jang, Jeong-Gi;Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Seong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.505-508
    • /
    • 2008
  • In this study, temperature increase and strength development of concretes with different types of cement were investigated to construct dam drop spillway. For this purpose, boxes of 1${\times}$1${\times}$1m size with 4 different concrete mixtures were made. The types of concrete were Type I cement concrete, fly ash cement concrete and two type concrete with ternary cement, respectively. The temperature at each point were monitored in these boxes. Based on the Box test, hydration analysis of slab of 2.0m thickness was carried out. This paper presents these experimental and analytical results.

  • PDF

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

A Study on the Effect of the Construction Conditions on a Thermal Crack of Mat Foundation (매트기초의 온도균열에 미치는 시공조건의 영향에 관한 연구)

  • 이도범;김효락;최일호
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.1-4
    • /
    • 2003
  • Recently, a structure has been larger and higher under the improvement of construction technique. So, a mass concrete constructions that a mat foundation thickness of structure is over 80cm have been many. Also, because of the reason of high strength of concrete, the matter of thermal crack have become an important task to be solved absolutely. tn a cause of a thermal crack occurrence, there are material used, mixture of concrete, construction condition and so forth. In this study, we executed temperature and stress analysis of mat foundation to know the effect of the construction condition on a thermal crack of mat foundation. And we evaluated quantitatively about the occurrence possibility of thermal crack using the hydration heat analysis program. By using of this analysis technique, we will can control skilfully the quality of a mat foundation in advance.

  • PDF