• Title/Summary/Keyword: heat of hydration in concrete

Search Result 540, Processing Time 0.028 seconds

Application of Insulation Curing Method with Double Bubble Sheets Subjected to Cold Weather (이중 버블시트를 이용한 단열양생공법의 한중시공 적용 사례)

  • Hong, Seak-Min;Lee, Chung-Sub;Kim, Jong;Jeon, Chung-Kun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1001-1004
    • /
    • 2008
  • This study reviewed the results of utilization of insulation heat curing method using double layer bubble sheet in slab concrete and mass concrete in cold weather environment. First of all, when double layer bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 6 and $10^{\circ}C$ even in case outside temperature drops $10^{\circ}C$ below zero until the 2nd day from piling, and in the case of mass concrete, with the maximum temperature difference between the center and surface less than $6^{\circ}C$, crack occurrence index was close to 2 and no hydration heat crack occurred by internal constraint. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Brief description of the Design and Construction of the Burj Dubai Project, Dubai, UAE.

  • Abdelrazaq Ahmad K.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. The early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria. This paper presents a brief overview of the structural system development and considerations of the tower and discusses the construction planning of the key structural components of the tower.

  • PDF

An Experimental Study on Crack Control of Core-wall Using 700kg/$\textrm{cm}^2$ Ultra High Strength Concrete (초고강도 콘크리트로 타설된 내부코아 벽체의 균열발생 및 제어에 관한 실험적 연구)

  • 윤영수;이승훈;노병용;박희도
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.201-206
    • /
    • 1995
  • This paper presents the experimental study on crack control of core-wall placed with 700kg/$\textrm{cm}^2$ Ultra high strength concrete. The thermal sensors were installed into the core-walls prior to the concrete casting to measure the heat of hydration and atmospheric temperature whose difference might cause the initial crack. Several curing schemes were taken for each basement floor 8 thru 6 to examine the influence of curing method on the crack width, total crack length and the number of crack occurred. This paper demonstrates that the proper curing scheme have a great favorable effect on the initial crack control on the structural elements with noticiable reduction in crack width.

  • PDF

Evaluation on In-Site Compressive Strength of High-Strength Concrete Mass Elements under Cold Weather (혹한기 고강도 콘크리트 매스부재의 현장 압축강도 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Do-Gyeu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.589-595
    • /
    • 2015
  • This study evaluated the in-site compressive strength development of high-strength concrete developed for the mass structures under cold weather condition. Two mock-up wall specimens with $2.0{\times}1.2{\times}1.0m$ in dimension were cured under an average temperature of $5^{\circ}C$. Core strengths measured at different locations of the mock-up walls were compared with the companion standard cylinder strengths. Test results revealed that the core strength of mock-up walls at an age of 3 days is higher by approximately 30% than the companion cylinder strength because of the high curing temperature effect generated from the heat of hydration of cementitious materials. Furthermore, comparisons with the prediction models based on maturity function confirmed that the effect of hydration heat on the curing temperature increase needs to be reflected to reasonably evaluate the on-site compressive strength development of concrete for mass elements.

The Effects of Various Cement Type and Compositions on the Material Properties of high Strength Concrete (시멘트 특성의 변화가 고강도콘크리트의 재료특성에 미치는 영향)

  • 백상현;이종열;엄태선;임채용;안광원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.47-52
    • /
    • 2000
  • Recently, it is very necessary the development of the manufacturing techniques for high strength concrete(HSC) for the large-scale size and good quality of civil structure. But, the manufacture and quality control of HSC of which shrinkage, heat of hydration and workability at construction filed are considered, is very difficult due to its low water-cement ratio and high quantity of unit cement content. In the present study, we tried to know and assess the influences of chemical and physical properties of cement on the material properties of HSC. We analyzed basic properties of 4 kinds of cement whose chemical and physical properties are different each other through various tests such as chemical analysis and mortal test. Also, we performed the assessment of the material properties of HSC for each dement by the test for the conditions of same mix design and similar compressive strength. From the results in the study, the assessment of the important quality factors of cement influencing the properties of HSC may be utilized to quality control of applied cement to manufacture the HSC of high quality.

  • PDF

Autogenous Shrinkage of Very-Early Strength Latex-Modified Concrete with Latex Contents (라텍스함량 변화에 따른 VES-LMC의 자기수축)

  • Park, Won-Il;Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1059-1065
    • /
    • 2010
  • Very-early strength latex-modified concrete (VES-LMC) was developed for the purpose of fast-track overlay of a concrete bridge deck under heavy traffic, concentrated on the workability, durability, and strength gain so that it can be opened to the traffic only three hours after its placement. The mixture of VES-LMC might accompany very high heat of hydration at early-age because of its inherent rapid hardening property and could have susceptibility to autogenous shrinkage because of its relatively low water-cement ratio. This study evaluated the effect of the latex-cement ratio(L/C) both of the constant and variable slumps on the autogenous shrinkage of VES-LMC by carrying out simple temperature rise test and early-age shrinkage experiment. Test results are as follows: The latex contributes on the enhancement of the concrete durability but has little effect on its hydration and the accompanied heat of hydration in VES-LMC. Autogenous shrinkage increased with the increase in latex-cement ratio at variable slumps and its pattern followed regularly a logarithmic increase. However, the influence of water-cement ratio and latex-cement ratios for the test specimens at constant slump on early-age autogenous shrinkage property was found to be minor due to the simultaneous effect of the two experimental variables.

A Study on the Mix Design and the Control of Thermal Crack of Mass Concrete (매스콘크리트의 배합설계 및 온도균열제어에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.533-538
    • /
    • 2001
  • This study was peformed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a results, the optimal mixing conditions were : W/B 41%, unit binder 375kg/$cm^{2}$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$cm^{2}$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

Effect of Alkali Activators on Early Compressive Strength of Blast-Furnace Slag Mortar (고로슬래그 모르타르의 초기 강도에 대한 알칼리자극제의 영향)

  • Moon, Han-Young;Shin, Dong-Gu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.120-128
    • /
    • 2005
  • In the construction industry, due to the cost rise of raw material for concrete, we have looked into recycling by-products which came from foundry. When using the Ground Granulated Blast-Furnace Slag(SG), it is good for enhancing the qualities of concrete such as reducing hydration heat, increasing fluidity, long-term strength and durability, but it has some problems : construction time is increased or the rotation rate of form is decreased due to low development of early strength. In this study, therefore, to enhance the early strength of SG mortar, we used some alkali activators(KOH, NaOH, $Na_2CO_3$, $Na_2SO_4$, water glass, $Ca(OH)_2$, alum. This paper deals with reacted products, setting time, heat evolution rate, flow and the strength development of SG cement mortar activated by alkali activators. From the results, if alkali activators were selected and added properly, SG is good for using as the materials of mortar and concrete.

Evaluation of Hydration Heat Properties of Mass Concrete and Crack Resistance Performance in Practical Large Underground Structures Using Ternary Blended Cement (3성분계 시멘트를 활용한 실 대형 지하구조물의 매스 콘크리트 수화 발열 특성 및 균열 저항성 평가)

  • Choi, Yun-Wang;Oh, Sung-Rok;Lee, Jae-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.82-91
    • /
    • 2019
  • In this study, in order to evaluate Hydration Heat Characteristics of mass concrete using ternary blended cement for large underground structures, the analysis considering the temperature history and the thermal characteristics inside the actual structure was performed. The results of the analysis are compared with the measured values to verify the reliability of the analysis and to evaluate the crack resistance performance. As a result of the measured the actual structure temperature, The adiabatic temperature rise coefficients K and ${\alpha}$ of the slab were $35.1^{\circ}C$ and 0.72, respectively, and the wall was analyzed as $29.3^{\circ}C$ and 0.67. The analytical results and the correlation coefficients(r) were 0.95 and 0.98, respectively. As a result of evaluating the crack resistance of slab and wall, the minimum crack index of slab and wall was 1.22 and 1.20, respectively. These results were found to satisfy the site management standards.

An Experimental Study on Hydration and Strength Development of High Blain Cement at Low Temperature (저온환경에서 고분말도 시멘트의 수화반응 및 강도발현 특성에 관한 실험적 연구)

  • Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung;Kim, Mok-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.367-373
    • /
    • 2015
  • In this study, fundamental properties of cement were reviewed to apply high fineness cement at low temperature environment. The classified high fineness cement has large proportion of particles below $10{\mu}m$ which affects early hydration: an overall reaction of cement hydration faster. As a result of using high fineness cement, setting time of concrete was reduced and compressive strength was higher than OPC at all ages. Especially, compressive strength was more than double its value compared with OPC after three days curing in low temperature. Faster reaction and higher heat of hydration was verified by calorimetry early and maximum heat of hydration was analyzed by adiabatic temperature raising test. The analysis of this study confirmed that high fineness cement can be suitable to be used in low temperature environment.