• Title/Summary/Keyword: heat of hydration in concrete

Search Result 540, Processing Time 0.022 seconds

The Application of High Strength Concrete on Woo-Sung Character 199 Project (우성 캐릭터 199에 고강도 콘크리트 적용에 관한 연구)

  • 신성우;안종문;김원섭;김세현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.357-362
    • /
    • 1996
  • The objective of this study is to investigate material properties and quality control of cast-in-place high strength concrete. High strength concrete with a design strength of 420 kgf/$\textrm{cm}^2$ is successfully produced at a ready-mixed concrete plant, and placed at a tall building. Many laboratory and field tests are carried out for the successful construction of the reinforced high strength concrete building. As the results of this study, the average actual 28-day compressive strength is 513 kgf/$\textrm{cm}^2$ and the coefficient of variation is 6.8%. The placing speed is comparable to normal strength concrete, however, the pump pressure is higher than that of normal strength concrete. To prevent cracks of massive and long concrete members, the control of hydration heat and shrinkage is very important.

  • PDF

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Frost Damage at Early Age (초기동해를 입은 고로슬래그 콘크리트의 강도발현 특성에 관한 실험적 연구)

  • 최성우;반성수;최봉주;유득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.629-634
    • /
    • 2001
  • Recently, to consider financial and constructive aspect, usage of Admixture, like Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-furnace Slag, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. According to this study, if early curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And that properties is not connected with the frost cause.

  • PDF

Optimum Mix Design of Concrete(II) (콘크리트 용도별 최적배합을 위한 연구(II))

  • 심재원;이병덕;양우석;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.175-178
    • /
    • 1999
  • In most domestic construction fields, excessive cement content has been used because of stubborn official inspection. The purpose of this study is to reduce the cement content of mix proportioning for the decrease of hydration heat, brittleness and drying shrinkage which governs durability of concrete significantly. Parameters includes the compressive strengths, type and dosage rate of chemical and mineral admixtures and types of concrete. It is found that the chemical admixture is efficient to the reduction of cement content for high strength concrete (400kg/$\textrm{cm}^2$) and the effectiveness of mineral admixtures in the low strength concrete is somewhat higher than the high strength concrete.

  • PDF

Analysis of Early-age Concrete Behavior considering Stress Relaxation (응력이완을 고려한 초기재령 콘크리트의 거동해석)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.641-646
    • /
    • 2001
  • In early-age concrete, volumetric deformations due to thermal expansion and moisture transfer are restrained by various boundary conditions, and then restraint stresses occur in proportion to developed stiffness. With increase of the age, these stresses are gradually relieved by significant relaxation behavior of early-age concrete. Therefore, it is necessary to consider the stress relaxation in order to analyze the behavior of early-age concrete more accurately. In this paper, we propose a unified algorithm which combines a relaxation model with hydration model, heat conduction model, micropore structure formation model, moisture diffusion model and mechanical properties development model and develop a finite element program based on the algorithm. The program is applied to evaluate stress development if a temperature-stress test machine (TSTM) specimen and a massive concrete structure, and then validity of the program is discussed and evaluated.

  • PDF

Mix Design and Physical Properties of Concrete Used in Yeoju-Bo Mass Concrete ("한강살리기" 4공구 여주보 매스콘크리트의 배합설계 및 역학적 특성)

  • Ha, J.D.;Park, K.W.;Shin, D.S.;Lee, C.K.;Kim, B.L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.189-190
    • /
    • 2010
  • Yeoju-Bo is a large massive concrete structures that require the reduction of working period of construction. In this study, we optimized the mix proportion of internal/external concrete and physical properties like compressive strength, semi adiabatic temperature rise in laboratory. And we also performed thermal analysis to verify the thermal cracking. Lastly we measured the hydration heat and the thermal cracking in site to verify the safety of massive concrete structure.

  • PDF

Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate (경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성)

  • Moon, Gyu-Don;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • In order to use the high-volume slag cement as a construction materials, a proper activator which can improve the latent hydraulic reactivity is required. The dissolved aluminum silicon ions from ground granulated blast furnace slag (GGBFS) react with sulfate ions to form ettringite. The proper formation of ettringite can increase the early-age strength of high-volume GGBFS (80%) cement. The aim of this study is to investigate the hydration properties with sulfate activators (sodium sulfate, anhydrite). In this paper, the effects of $Na_2SO_4$ and $CaSO_4$ on setting, compressive strength, hydration, micro-structure were investigated in high-volume GGBFS cement and compared with those of without activator. Test results indicate that equivalent $SO_3$ content of 3~5% improve the early-age hydration properties such as compressive strength, heat evolution rate, micro-pore structure in high-volume GGBFS cement.

Field Mock up Test of High Strength Concrete for Busan Lotte Town (부산롯데타운용 고강도 콘크리트 현장 적용을 위한 Mock-up Test)

  • Moon, Hyung-Jae;Park, Soon-Jeon;Heo, Jin-Wook;Koo, Ja-Sul;Jeong, Youn-Sung;Lee, Yang-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.223-224
    • /
    • 2009
  • This study was performed to development 80MPa high strength concrete using local raw material of Busan and to estimate field application ability. As the result of three types of mixture, fresh and hardened properties were satisfied with target requirement properties. Hydration temperature was revealed mean 75$\sim$85$\circ$C. Additionally, in case of compressive strength, core specimen's strength is six times higher than field curing specimen by very high hydration heat.

  • PDF

Experimental Study on Hardening Process of High-Strength and High-Flowable Concrete in Cold Weather (고강도.초유동 콘크리트의 동절기 경화이력에 관한 실험적 연구)

  • 윤영수;이승훈;노윤호;안창남;성상래;백승준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.95-100
    • /
    • 1996
  • This paper presents the experimental study on hardening process of high-strength and high-flowable concrete. The experiments were performed to investigate any unfavorable construction situations since the actual concrete placement has been scheduled in cold weather period, so that the high quality concrete construction is convinced to be successfully carried out. The tests were conducted using 600nm and 1000nm height of steel tube to simulate the practical concrete filled steel tube columns according to the following variables as: the categories of chemical admixtures, curing temperatures and curing schemes. The test results were analyzed in terms of hardening speed, internal heat of hydration and history of strength gain. This paper emphasizes the importance of curing schemes on durability and the use of hardening accelerators on strength gain.

  • PDF

The Properties of Recycle Cement to Reuse Cementitious Powder from Neutralized Concrete Waste (중성화가 진행된 폐콘크리트계 미분말을 재활용한 재생시멘트의 물성)

  • Kang, Tae-Hun;Kim, Sung-Su;Jung, Min-Soo;Kang, Byung-He
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is development of technique to use cementitious powder as recycle cement produced from deteriorated Concrete waste which has a large quantity of calcium carbonate. Therefore, after having theoretical consideration based on the properties of high-heated concrete and concerning about neutralization of Concrete, we analysis chemical properties of ingredients of cementitious powder. After making origin cement paste, then processing the accelarated carbonation, we consider the properties of hydration and chemical properties of cementitious powder under various temperature conditions. As a result of the thermal analysis, the CaCo3 content of cementitious powder would affect decision of heat temperature to recover its hydrated ability because CaCo3 content is increased when neutralization is progressed. And as a result of XRD analysis, in case of origin powder of non-neutralized paste, CaO peak is found at 700℃. but, heat temperature to generate CaO would increase when the content of neutralized ingredients is increased. Finally, recycle cement heated at 700℃ shows the best compressive strength when the content of neutralized ingredients in recycle cement is less then 50%. However, it would be quite difficult to manage quality of recycle cement according to recycling points of various concrete waste.

  • PDF

The Properties of Recycle Cement to Reuse Cementitious Powder from Neutralized Concrete Waste (중성화가 진행된 폐콘크리트계 미분말을 재활용한 재생시멘트의 물성)

  • 강태훈;김성수;정민수;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.77-82
    • /
    • 2003
  • The purpose of this study is development of technique to use cementitious powder as recycle cement produced from deteriorated Concrete waste which has a large quantity of calcium carbonate. Therefore, after having theoretical consideration based on the properties of hish-heated concrete and concerning about neutralization of Concrete, we analysis chemical properties of ingredients of cementitious powder After making origin cement paste, then processing the accelerated carbonation, we consider the properties of hydration and chemical properties of cementitious powder under various temperature conditions As a result of the thermal analysis, the CacO3 content of cementitious powder would affect decision of heat temperature to recover its hydrated ability because CacO3 content is increased when neutraliTation is preBlessed. And as a result of XRD analysis. in case of origin powder of non-neutralized paste, CaO peak is found at $700^{\circ}C$. but, heat temperature to generate CaO would increase when the content of neutralized ingredients is increased. Finally, recycle cement heated at $700^{\circ}C$ shows the best compressive strength when the content of neutralized ingredients in recycle cement is less then 50%. However, it would be quite difficult to manage quality of recycle cement according to recycling points of various concrete waste.

  • PDF