• Title/Summary/Keyword: heat of hydration in concrete

Search Result 538, Processing Time 0.024 seconds

Field Application of the Mass Concrete Utilizing Combined Method for Temperature Crack Reduction (온도균열 저감공법을 복합사용한 매스콘크리트의 현장적용)

  • Han, Sang-Yoon;Lee, Chung-Sub;Baek, Dae-Hyun;Jang, Duk-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.37-39
    • /
    • 2010
  • In this study, with new office construction site of S Construction company as subject, to solve all the problems according to reduced hydration heat and temperature crack of mass concrete used mat foundation and placing time difference, low heat combination of coarse particle cement and fly-ash and setting time difference applied AE water reducing agent, and to prevent the early frost damage caused by low outdoor temperature, a heat insulation method using double bubble sheet was conducted. As a result, it was found that hydration heat and setting time difference was reduced by applying a low heat combination and setting time difference construction method, and that the high insulation capability of the double bubble sheet was able to not only prevent the early frost damage but also reduce temperature difference between the central part and the upper part of mass concrete.

  • PDF

Thermal cracking assessment for nuclear containment buildings using high-strength concrete

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Chang, Chun-Ho;Mun, Ju-Hyun
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.429-438
    • /
    • 2020
  • To shorten the construction times of nuclear facility structures, three high-strength concrete mixtures were developed with specific consideration given to their curing temperatures, their economic efficiency, and the practicality of their quality control. This study was conducted to examine the temperature rise profiles of these three concrete mixtures and the potential for early-age thermal cracking in the primary containment vessel of a nuclear reactor with a wall thickness of 1200 mm. The one-layer placement height of the concrete for the primary containment vessel was increased from the conventional 3 m to 3.5 m. A nonlinear finite element analysis (FEA) was conducted using the thermal properties of concrete determined from the isothermal hydration and adiabatic hydration tests, and tuned through comparisons made with temperature rise profiles obtained for 1200-mm-thick mock-up wall specimens cured at temperatures of 5, 20, and 35℃. The hydration heat performance of the three concrete mixtures and their potential to produce thermal cracking in nuclear facilities indicate that the mixtures have considerable potential for practical application to the primary containment vessel of a nuclear reactor at various curing temperatures, fulfilling the minimum requirements of the ACI 301 and minimizing the likelihood of the occurrence of thermal cracks.

Investigation of Optimal Construction Procedures for Concrete Underpass Structures Considering Heat of Hydration (수화열을 고려한 콘크리트 지하차도 적정 시공법 분석)

  • An, Zu-Og;Kim, Seong-Min;Kim, Dong-Ryun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.229-238
    • /
    • 2009
  • This paper describes the methods to propose the optimal material properties and construction steps that prevent cracks due to the thermal stresses induced by the hydration heat under the construction of the concrete underpass structures. To achieve the goal of this study, the heat transfer theories were employed and the three-dimensional finite element model of the underpass structure was developed and used for the structural analyses. If the volume of the concrete member that is placed at one time is significantly large, the member is assumed to be the mass concrete and is easy to induce cracks. In order to minimize the cracks during the construction, two different methods can be utilized: one is to arrange the construction steps optimally and the other is to change the materials to reduce the probability of the crack occurrence. In this study, the analyses were performed by considering the changes in material properties with time, the characteristics of the hydration heat generation for cements and admixtures, the volume of the concrete placement at one time, and the environmental conditions.

  • PDF

An Experimental Study on the Quantification of Hydration Heat Evolution in Mass Concrete (매스콘크리트 수화발열 특성의 정량화를 위한 실험적 연구)

  • 이장화;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.238-242
    • /
    • 1994
  • Recently, construction of mass concrete structures except Dam are increased very often. Generation heat due to the hydrating reaction of mass concrete is generally larger than the heat released to the air, foundations and the exist structures. Therefore, internal temperature of mass concrete is remarkably risen and temperature gap between center and surface is extended by various effect. It this gap get large, the crack may be occurred. This crack must be controlled as little as possible to ensure the soundness and durability of structure. Firstly, Temperature rising history of Mass concrete is expected correctly to constrain the crack of mass concrete. So, objectives of this research is to quantify the effects of hydration temperature for the purpose of evaluating accurately the temperature history of mass concrete.

  • PDF

Effects of Bacterial Nutrients on Early Cement Composites Properties (박테리아 영양소 성분이 시멘트 복합체의 초기 특성에 미치는 영향)

  • Jang, Indong;Kim, Baek-Joong;Yi, Chongku
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • When manufacturing self-healing concrete using bacteria, nutrients are added to increase the activity of the bacteria. Although many researches have focused on the effects of nutrients containing bacterial healing agent on concrete, few have studied the effects of sole nutrient on self-healing of cement composites. Bacterial nutrients, like commercial chemical admixtures, affect hydration characteristics such as flow, setting, hydration heat, mechanical strength of cement composites and also affect the self healing of cement composites by hydration of unhydrated particles. In this study, effect of the four nutrient commonly used in the existing literature on the hydration characteristics of cement composites by its addition was investigated. Flow, setting time, hydration heat, compressive strength have studied for each nutrients added by 1.5% and 3% of cement weight. Experimental results shows that urea and calcium-nitrate can be used up to 3% without significant detrimental effect on cement composites. Addition of calcium-lactate up to 1.5% show better compressive strength than control, but addition of 3% show almost non-hydration. Yeast extract shows detrimental effects on the composites regardless of the amount added.

Temperature development and cracking characteristics of high strength concrete slab at early age

  • Wu, Chung-Hao;Lin, Yu-Feng;Lin, Shu-Ken;Huang, Chung-Ho
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.747-756
    • /
    • 2020
  • High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 × 600 × 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.

Hydration Reaction Properties of Concrete With Binders and Admixtures (결합재와 혼화재 종류에 따른 콘크리트의 수화반응 특성)

  • Cho, Il-Ho;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.27-34
    • /
    • 2008
  • Recently, owing to the development of industry and improvement of building techniques, concrete structures are becoming larger and higher. This study was performed to analyze hydration reation properties of concrete with binders and admixtures, such as OPC, low heat cement, belite rich cement, slag powder, lime powder and fly ash. To investigate effects of PC type superplasticizer on the hydration, experiments involving FT-IR, XRD, DSC, SEM were analyzed at the curing age 1day, 3days and 28days. The hydration reaction rate of OPC concrete slightly delayed at the curing age 1day, blast furnace slag powder and fly ash were more effective. BRC and LHC concretes can be used for concrete structures in winter season.

Property Evaluation of Low-Heat Concrete with Phosphate-PCM Composite (Phosphate-PCM계 복합물질 기반 저발열 콘크리트의 특성 평가)

  • Ki, Jun-Do;Lee, Sang-Hyun;Cho, Hong-Bum;Kim, Young-Sun;Seok, Won-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.175-176
    • /
    • 2020
  • This study aims to develop the hydration heat reducing material (powder type) to lower the heat of hydration of mass members in the extremely hot weather condition. In this study, we applied the developed material to the concrete that used two kinds of binders with cement and evaluate the concrete properties with it.

  • PDF

An Experimental Stuty on Mass Concrete Durability & Hydration Heat Generation Characteristics according to Kinds of Cement & Form (시멘트 및 거푸집 종류에 따른 매스콘크리트의 내구성 및 수화발열특성에 관한 실험적 연구)

  • Kim, Kang-Min;Moon, Sang-Bong;Song, Yong-Soon;Kang, Suck-Hwa;Choi, Sam-Soon;Cho, Yong-Yeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.359-360
    • /
    • 2009
  • This Study is performed Mock-up test accounting for height of placement to review behavior of mass concrete according to kinds of cement & form. First, we measured hydration heat and show a different hydration heat generation characteristics as compared with each other. And we measured mortar outflow, the strength of concrete core and standard specimens, concrete's ability to resist chloride ion penetration in order to durability estimation of concrete. This study was aims to improve quality of mass concrete under marine environment.

  • PDF

A Study on the Properties of Low-Heat Cement Concrete (저발열시멘트 콘크리트의 기초적 성질에 대한 연구)

  • 문한영;김성수;신화철;강석화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.57-60
    • /
    • 1997
  • The properties of Low-heat cement are especially in lower heat of hydration than that of other types of cement. In other respect, Low-heat concrete is more advantageous than OPC concrete in chemical resistance, long term age compressive strength, slump loss and resistance to seawater. This paper deals with 28 days age compressive strength and slump loss by elapsed time of mortar and concrete that made with Low-heat cement and 3 types of other cement.

  • PDF