• Title/Summary/Keyword: heat exchange network

Search Result 18, Processing Time 0.031 seconds

An Analysis on the Construction of Energy Exchange Network to Recover Waste Heat Energy in Pohang Steel Industrial Complex (포항철강산업단지 내부 폐열 회수를 위한 에너지 교환망 구축 방안 분석)

  • Lee, Gwang-Goo;Jung, In-Gyung;Chun, Hee-Dong
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.406-411
    • /
    • 2011
  • A detailed database of waste heat is built to propose energy exchange networks to recover waste energy in Pohang Steel Industrial Complex. A visualized technique is used to figure out the status of waste heat energy and to suggest potential energy exchange networks. Several energy networks are proposed in terms of temperature level, the amount of available energy, distance, and construction cost. A simple economical assessment is applied to the energy exchange networks which have higher economic potential. Their average payback period is estimated to be 2.8 years. The total amount of energy saving by constructing the proposed energy exchange networks is 4,778 TOE per year. It corresponds to 11,160 ton $CO_2$ reduction with the assumption that the recycled waste energy replaces the use of LNG in energy-demanding companies.

Optimization of Heat Exchange Network of SOFC Cogeneration System Based on Agricultural By-products (농산부산물 기반 SOFC 열병합발전 시스템 열교환망 최적화)

  • Gi Hoon Hong;Sunghyun Uhm;Hyungjune Jung;Sungwon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In this study, we constructed a process simulation model for an agricultural by-products based Solid Oxide Fuel Cell (SOFC) combined heat and power generation system as part of the introduction of technology for energy self-sufficiency in the agricultural sector. The aim was to reduce the burden of increasing fuel and electricity consumption due to rapid fluctuations in international oil prices and the expansion of smart farming in domestic farms, while contributing to the national greenhouse gas reduction goals. Based on the experimental results of 0.3 ton/day torrefied agricultural by-product gasification experiment, a model for an agricultural by-product-based SOFC cogeneration system was constructed, and optimization of the heat exchange network was conducted for SOFC capacities ranging from 4 to 20 kW. The results indicated that an 8 kW agricultural by-product-based SOFC cogeneration system was optimal under the current system conditions. It is anticipated that these research findings can serve as foundational data for future commercial facility design.

Exergy Analysis and Heat Exchanger Network Synthesis for Improvement of a Hydrogen Production Process: Practical Application to On-Site Hydrogen Refueling Stations (수소 생산 공정 개선을 위한 엑서지 분석과 열 교환망 합성: 분산형 수소 충전소에 대한 실용적 적용)

  • YUN, SEUNGGWAN;CHO, HYUNGTAE;KIM, MYUNGJUN;LEE, JAEWON;KIM, JUNGHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • In this study, the on-site hydrogen production process for refueling stations that were not energy-optimized was improved through exergy analysis and heat exchange network synthesis. Furthermore, the process was scaled up from 30 Nm3/h to 150 Nm3/h to improve hydrogen production capacity. Exergy analysis results show that exergy destruction in the SMR reactor and the heat exchanger accounts for 58.1 and 19.8%, respectively. Thus, the process is improved by modifying the heat exchange network to reduce the exergy loss in these units. As a result of the process simulation analysis, thermal and exergy efficiency is improved from 75.7 to 78.6% and 68.1 to 70.4%, respectively. In conclusion, it is expected to improve the process efficiency when installing on-site hydrogen refueling stations.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Development of An Industrial Complex Steam Network Optimization Method Using Steam Networking Matrices(SNMs) (Steam Networking Matrices(SNMs)를 이용한 산업 단지의 스팀 네트워크 최적화 방법론 개발)

  • Kim, Sang-Hun;Chae, Song-Hwa;Yoon, Sung-Geun;Park, Sun-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1184-1190
    • /
    • 2006
  • Most chemical companies try to maximize their energy efficiencies due to high oil price and reinforcement of environmental regulation. An individual factory continuously has tried to reduce energy consumption or carbon dioxide discharge for high profit. Nevertheless, it is found that waste heat is disposed with forms of low or medium pressure steams. It can be improved by the aspect of entire industrial complex. Therefore, we have developed a steam network optimization method using Steam Networking Matrices(SNMs) in this research. Results from an illustrative example show that energy consumption can be reduced by optimizing steam exchange networks.

Study on the Characteristics of Methanol Steam Reformer Using Latent Heat of Steam (수증기의 잠열을 이용한 메탄올 수증기 개질기의 특성 연구)

  • CHEON, UKRAE;AHN, KANGSUB;SHIN, HYUNKHIL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Fuel cells are used to generate electricity with a reformer. In particular, methanol has various advantages among the fuels for reformer. Methanol steam reformer devices can efficiently supply hydrogen to PEM fuel cell. This study investigated the optimal operation conditions of a methanol steam reforming process. For this purpose, aspen HYSYS was used for the optimization of reforming process. The optimal operating condition could be designed by setting independent variables such as temperature, pressure and steam to carbon ratio (SCR). The optimal temperature and steam to carbon ratio were $250-270^{\circ}C$ and 1.3-1.5, respectively. It is advantageous to operate at a pressure of 15-20 barg, considering the performance of the hydrogen purifier. In addition, a heat exchange network was designed to supply heat constantly to reformer through the latent heat of steam.

Complex Process Control using the Adaptive Neural Fuzzy Inference System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.351-351
    • /
    • 2000
  • Since the heat exchange system, such as the boiler of power plant, gas turbine, and radiator require an application of intelligent control system for a high rate heat efficiency and the efficiency of these systems is depended on the control methods it is important for operator to understand control system of these systems and intelligent control technologies. In order to properly apply control equipment and intelligent technology to these process control systems, it is necessary to understand fuzzy, neural network, genetics, and immune as well as the basic aspects and operation principle of the process that relate control, interrelationships of the process characteristics, and the dynamics that are involved. Generally, since PID controllers are used in these systems it is difficult far engineer to understand both the complex dynamics and the intelligent control method. In this paper, we design an effective experimental system for the intelligent control education and analyze its characteristics through experimental system and each intelligent method to study how they can learn intelligent control system by experiments.

  • PDF

Optimization of Hydrogen Production Process using 50 Nm3/h Biogas (50 Nm3/h급 바이오가스 직접 이용 수소 생산 공정 최적화)

  • Gi Hoon Hong;DongKyu Lee;Hyeong Rae Kim;SangYeon Hwang;HyoungWoon Song;SungJun Ahn;SungWon Hwang
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.44-52
    • /
    • 2024
  • This study presents a novel approach to hydrogen production by biogas from organic waste without CO2 removal. A process model was developed to reduce the costs associated with biogas pretreatment and purification processes. Through optimization of heat exchange networks, the simulation aimed to minimize process costs, maximizing hydrogen production and flue gas temperature. The results reveal that the most efficient process model maximizes the flue gas temperature while following the constraint of the number of heat exchangers. These findings hold promise for contributing to the expansion of "Biogas-to-clean hydrogen" energy conversion technology.

A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network (연료전지차량용 연료개질기에 대한 최적연료비교연구)

  • Jung, Ikhwan;Park, Chansaem;Park, Seongho;Na, Jonggeol;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.720-726
    • /
    • 2014
  • PEM fuel cell vehicles have been getting much attraction due to a sort of highly clean and effective transportation. The onboard fuel processor, however, is inevitably required to supply the hydrogen by conversion from some fuels since there are not enough available hydrogen stations nearby. A lot of studies have been focused on analyses of ATR reactor under the assumption of thermo-neutral condition and those of the optimized process for the minimization of energy consumption using thermal efficiency as an objective function, which doesn't guarantee the maximum hydrogen production. In this study, the analysis of optimization for 100 kW PEMFC onboard fuel processor was conducted targeting various fuels such as gasoline, LPG, diesel using newly defined hydrogen efficiency and keeping simply synthesized heat exchanger network regardless of external utilities leading to compactness and integration. Optimal result of gasoline case shows 9.43% reduction compared to previous study, which shows the newly defined objective function leads to better performance than thermal efficiency in terms of hydrogen production. The sensitivity analysis was also done for hydrogen efficiency, heat recovery of each heat exchanger, and the cost of each fuel. Finally, LPG was estimated as the most economical fuel in Korean market.

Recent advances in NMR-based structural characterization of αB-crystallin and its potential role in human diseases

  • Muniyappan, Srinivasan;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2019
  • ${\alpha}B$-crystallin (${\alpha}BC$) is a member of a small heat-shock protein (sHSP) superfamily and plays a predominant role in cellular protein homeostasis network by rescuing misfolded proteins from irreversible aggregation. ${\alpha}BC$ assembles into dynamic and polydisperse high molecular weight complexes containing 12 to 48 monomers; this variable stereochemistry of ${\alpha}BC$ has been linked to quaternary subunit exchange and its chaperone activity. The chaperone activity of ${\alpha}BC$ poses great potential as therapeutic agents for various neurodegenerative diseases. In this mini-review, we briefly outline the recent advancement in structural characterization of ${\alpha}BCs$ and its potential role to inhibit protein misfolding and aggregation in various human diseases. In particular, nuclear magnetic resonance (NMR) spectroscopy and its complimentary techniques have contributed much to elucidate highly-dynamic nature of ${\alpha}BCs$, among which notable advancements are discussed in detail. We highlight the importance of resolving the structural details of various ${\alpha}BC$ oligomers, their quaternary dynamics, and structural heterogeneity.