• Title/Summary/Keyword: heat equivalent

Search Result 416, Processing Time 0.025 seconds

비대칭 대수나선 스크롤 팽창기 설계에 관한 연구 (A Study on the Design of an Asymmetric Algebraic Scroll Expander)

  • 김현진;문제현;이영성
    • 설비공학논문집
    • /
    • 제26권3호
    • /
    • pp.122-129
    • /
    • 2014
  • In order to extract shaft power from thermal energy in a R134a Rankine cycle as waste heat recovery system of a passenger car, a scroll expander has been designed. Algebraic spiral is adopted as the base curve for scroll wrap profile in the compact scroll design. About 19% reduction in scroll diameter is accomplished when compared to the conventional involute scroll. Performance analysis on the designed scroll expander shows that the expander efficiency is 85.5% at the vehicle speed of 120 km/hr and it decreases to 67.2% at 60 km/hr, provided that the scroll clearance is kept at 10 ${\mu}m$. The expander can produce shaft power equivalent to about 13~14% of the driving power within the speed range of 60~120 km/hr.

열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향 (Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste)

  • 김상현;이채영
    • 상하수도학회지
    • /
    • 제25권3호
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

적층된 로터에서 적층판 압착력의 강성 효과 (Stiffness effect of the lamination pressing force for laminated rotor)

  • 김영춘;박철현;박희주;문태선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.565-568
    • /
    • 2002
  • A lot of rotating machines are being used in the industrial world and electric motor and generator take the most part of it. When it comes to the electric motor and generator, we can not help thinking about the eddy current because it brings a loss of electric and can be a important reason of the heat generation. To attenuate eddy current. laminated silicon steel sheets are being used in general. Especially, laminated rotor is being used for rotating part of the electric motor and generator and it decreases electrical loss and heat generation but we can be faced with another problem. In general, most of the motor and generator can be normally operated under 3600rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed. large scale and high precision in industrial world. The critical speed can be determined from the inertia and stiffness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape. lamination material and shape. insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method.

  • PDF

고장력 냉연강판에서 미세조직에 대한 연속어닐링조건의 영향 (Effects of Continuous Annealing Parameters on Microstructures in a Cold-Rolled High Strength Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제17권5호
    • /
    • pp.283-292
    • /
    • 2004
  • The effects of the annealing parameters on microstructures were examined in a cold-rolled high strength steel containing 0.1% C, 0.5% Si, 1.5% Mn, and 0.04% Nb. It was impossible to avoid martensite in the microstructure even though the continuous annealing parameters were controlled. This indicates that the alloying elements such as silicon and manganese contributing to manganese equivalent($Mn_{eq}$) should be reduced to produce the ferrite-pearlite microstructure for the solid solution and precipitation hardened steel. It was found that a decrease in the rapid cooling temperature to $520^{\circ}C$ was effective to change the microstructure from ferrite-martensite to ferrite-pearlite-martensite. Typical dual-phase properties exhibiting a low yield ratio and a continuous yielding behavior were obtained when the rapid cooling temperature was in the range of $680^{\circ}C$ to $600^{\circ}C$. The critical volume fraction of martensite for the typical properties of dual-phase steel was about 11 percent.

전기자동차 배터리 팩 형상이 배터리 셀 주위의 강제대류에 미치는 영향에 대한 수치해석 (A Numerical Study on the Effect of Battery-pack Shape of Electric Vehicle on the Forced Convection Around Battery Cells)

  • 김교현;김태완;우만경;전병진;최형권
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.16-21
    • /
    • 2017
  • In this paper, the effect of battery-package shape of electric vehicle on the forced convection around a group of battery cells has been numerically investigated. Simulations for the two package shapes with straight/curved ducts have been conducted to examine the two design factors; the maximum temperature and the temperature deviation of a group of cells which influence the cell durability. The simulation of the conjugate heat transfer has been simplified by employing an equivalent thermal conductivity of cell that consists of various materials. It has been found that the maximum temperature and the temperature deviation of curved duct were lower than those of straight duct. Velocity fields have also been examined to describe the temperature distribution of a group of cells and the position of maximum temperature was found to be related to the dead zone of flow field.

  • PDF

GaN MOSFET을 이용한 고밀도, 고효율 48V 버스용 3-출력 Buck Converter 설계 (A High Efficiency, High Power-Density GaN-based Triple-Output 48V Buck Converter Design)

  • 이상민;이승환
    • 전력전자학회논문지
    • /
    • 제25권5호
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a 70 W buck converter using GaN metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. This converter exhibits over 97 % efficiency, high power density, and 48 V-to-12 V/1.2 V/1 V (triple output). Three gate drivers and six GaN MOSFETs are placed in a 1 ㎠ area to enhance power density and heat dissipation capacity. The theoretical switching and conduction losses of the GaN MOSFETs are calculated. Inductances, capacitances, and resistances for the output filters of the three buck converters are determined to achieve the desired current, voltage ripples, and efficiency. An equivalent circuit model for the thermal analysis of the proposed triple-output buck converter is presented. The junction temperatures of the GaN MOSFETs are estimated using the thermal model. Circuit operation and temperature analysis are evaluated using a circuit simulation tool and the finite element analysis results. An experimental test bed is built to evaluate the proposed design. The estimated switch and heat sink temperatures coincide well with the measured results. The designed buck converter has 130 W/in3 power density and 97.6 % efficiency.

Effect of Thermal History on Pitting Corrosion of High Nitrogen and Low Molybdenum Stainless Steels

  • Kim, Kwangsik;Chang, Hyunyoung;Kim, Youngsik
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.75-81
    • /
    • 2003
  • Chromium, molybdenum. and nitrogen are very important alloying elements in stainless steels and its effect was approved in pitting resistance equivalent (PRE) equations and many experimental results. However, Cr can improve the corrosion resistance, but facilitate the formation of sigma phase. Also. Mo has the same effect in stainless steels. If Cr and Mo are added at high amount to increase the corrosion resistance of stainless steel, corrosion resistance in annealed alloys can be improved, but in case of welding or aging heat treatment. its resistance will be drastically decreased. In this work, increasing Cr and N contents but decreasing Mo than the commercial alloys made the experimental alloys. Typical alloys are 25Cr-4.5Mo-0.43N alloy, 27Cr-4.7Mo-0.4N alloy, 27Cr-5.3Mo-0.25N alloy, 32Cr-2.6Mo-0.36N alloy. After annealing and aging heat treatment, microstructures, anodic polarization test, and pitting corrosion test were performed. Annealed alloys showed $100^{\circ}C$ of CPT and aged alloys showed the different tendency depending upon Cr and Mo contents(SFI)

DC모터형 연료펌프를 이용한 연료공급방식별 LPG성상에 따른 LPi엔진 연소 및 배출가스 특성 (LPi Engine Combustion and Emission Characteristics Depending on LPG Properties from Various Fuel Supply Types by Using DC Motor Type Fuel Pump)

  • 김주원;황인구;명차리;박심수
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.907-914
    • /
    • 2008
  • This study is mainly focused on the assessment of return, semi return, and returnless fuel supply system for an LPi engine. In order to compare the return type with returnless one with various LPG blends, combustion analysis and cyclic THC emission characteristic were tested at the part load operating condition of the LPi engine. Considering heat balance of each fuel supply systems, pressure and temperature increment of return type showed lower at the fuel rail during idle warm up operation. However, those of returnless type at LPG tank maintained stable and slow increment because the heat transfer from the LPi engine was minimized. Finally, hot restartability of each fuel supply systems were evaluated with the various LPG blends and fuel temperatures. As a result, semi return type has equivalent performance to return type considering combustion and emission characteristic, hot restartability performance for LPi engine.

TRNSYS 기반 무창기공형 공기식 집열 시스템 부프로그램 개발에 관한 연구 (Study on Development of Subroutine based on TRNSYS for Unglazed Transpired Air Collector System)

  • 박준언;이의준;정모
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.81-90
    • /
    • 2003
  • UTAC(unglazed transpired air collector) system has unique advantage for space heating and tempering ventilation air over the conventional collector system such as flat plate and vacuum collector. UTAC can improve radiative and convective loss due to nonglazed component and enhanced plate surface configuration. and heating energy and its equivalent green house emission performance can be improved from the use of this like collector in building application. The Option D Calibration simulation approach of IPMVP(International Performance Measurement and Verification Protocol) in ESCO businesses has been recommended to use of the calibrated computer modules like these Energy-10. DOE2.1E and TRNSYS(transient system simulation). This study is to develop subroutine type-203 of TRNSYS15.2 program and appraise thermal performance of UTAC. With newely addeded subroutine type-203. 1) Thermal performance of unglazed transpired collector could be possible based on dimensionless variables such as efficiency and heat exchanger effectiveness. and 2) Assessement of energy consists of solar useful and insulation saving for UTAC could be possible.

소형 Slot less PMSM의 coil 배치에 따른 최적 설계 및 열 내구성 분석 (A Study on Optimal Design According to Change of Coil Distribution in Slot Less Type Permanent Magnet Synchronous Motor)

  • 김용태;고덕화;김규화;백성민;김규탁
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.27-32
    • /
    • 2017
  • In this paper, slot less type high-speed and compact motor was designed. it was selected through change of stator coil distribution for the optimal performance of the motor. In this paper, designed motor was expected to be very vulnerable to heat dissipation in a compact motor. Therefore, to ensure reliability in the design result, winding and permanent magnet damage caused by the losses of motor was analyzed by thermal analysis and demagnetization analysis. Using the result, whether motor burnout was confirmed by motor performance degradation and insulation breakdown.