• Title/Summary/Keyword: heat equation

Search Result 1,382, Processing Time 0.025 seconds

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

Investigation on Numerical Integration for Radiation Heat Transfer in Radiating Fluid (복사유체의 복사열전달 수치 적분에 관한 연구)

  • Han Cho Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.62-70
    • /
    • 2004
  • Interaction between fluid flow and thermal radiation has received considerable attention due to its numerous applications in engineering field. In this case the thermofluid properties of radiating fluid vary with the variation of temperature field caused by absorption and emission of radiant heat. To analyze the radiation heat transfer in radiating fluid, the simultaneous solution of the radiative transfer equation (RTE) and the fluid dynamics equations is required. This means that the numerical procedure used for the RTE must be computationally efficient to permit its inclusion in the other submodels, and must be compatible with the other transport equations. The finite volume method (FVM) and the discrete ordinates method (DOM) are usually employed to simulate radiation problems in generalized coordinates. These two representative methods are examined and compared, especially in view of the numerical integration of the radiation intensity over solid angle. The FVM shows better accuracy than the DOM owing to less constraints of the selection of control angle.

  • PDF

An Experimental Study on Heat Transfer Characteristics with Turbulent Flow in a Cylindrical Annuli (원형이중관내의 난류유동의 열전달 특성에 관한 실험적 연구)

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.193-200
    • /
    • 2002
  • An experimental study was performed to study heat transfer characteristics for turbulent flow in an axisymmetric annuli. The air flow temperature and the local Nusselt number in turbulent flow were measured or calculated for Re=30,000, 40,000, 50,000, 60,000, 70,000 and 80,000. The local Nusselts number were compared to that obtained from Dittus-Boelter equation with turbulent flow. The results show that the flow enhances the heat transfer in the initial and exit portion of the test tube.

  • PDF

아크 용접에서 구동력에 따른 열 및 물질 유동에 관한 연구

  • 김원훈;나석주
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.27-41
    • /
    • 1996
  • In this study the heat transfer and fluid flow of the molten pool in stationary gas tungsten arc welding using argon shielding gas were investigated. Transporting phenomena from the welding arc to the base material surface, such as current density, heat flux, arc pressure and shear stress acting on the weld pool surface, were taken from the simulation results of the corresponding welding arc. Various driving forces for the weld pool convection were considered, self-induced electromagnetic, surface tension, buoyancy, and impinging plasma arc forces. Furthermore, the effect of surface depression due to the arc pressure acting on the molten pool surface was considered. Because fusion boundary has a curved and unknown shape during welding, a boundary-fitted coordinate system was adopted to precisely describe the boundary for the momentum equation. The numerical model was applied to AISI 304 stainless steel and compared with the experimental results.

  • PDF

The Standard Comparison of Calculating the Permissible Current Carrying Capability for Overhead Transmission Line (가공송전선로의 허용전류 계산 규격의 검토)

  • Jeong, S.H.;Nam, K.Y.;Lee, J.D.;Choi, S.B.;Ryoo, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.274-275
    • /
    • 2006
  • The IEEE std 738 and Cigre Electra documents are well known as the standard of calculating the ampacity of overhead conductors. Although these two standards use the same basic heat balance concept, they use different applicable methods to calculate ampacity ratings. This paper examines the concept of basic heat balance equation and the differences of each term of basic heat balance equation.

  • PDF

Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.673-687
    • /
    • 2008
  • In this paper, a thermo-viscoelastic problem in an infinite isotropic medium in two dimensions in the presence of a point heat source is considered. The fundamental equations of the problems of generalized thermoelasticity including heat sources in a thermo-viscoelastic media have been derived in the form of a vector matrix differential equation in the Laplace-Fourier transform domain for a two dimensional problem. These equations have been solved by the eigenvalue approach. The results have been compared to those available in the existing literature. The graphs have been drawn for different cases.

A Study on Creep, Drying Shrinkage, Hydration Heat Produced in Concrete Floor Plate of Steel Box Girdler Bridge (강박스 거더교 콘크리트 바닥판에 발생하는 크리프, 건조수축, 수화열에 관한 연구)

  • 강성후;박선준;김민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.457-462
    • /
    • 2003
  • It studies the non-structural crack factors that are produced in Steel Box Girder Bridge concrete floor plate using analytical method. It mainly studies humidity and design standard of concrete strength. It used MIDAS CIVIL Ver 5.4.0, a general structure analysis program that applies drying shrinkage rate of domestic road bridge design standard and standard value of creep coefficient, CEF-FIP standard equation and ACI standard equation from the aspect of creep, drying shrinkage and hydration heat to see the effect of the two factors on concrete crack and found the following result. The analytical results of this study showed that the initial stress, which was obtained by ACI standard, exceeds the allowable tensile stress between 5 to 18 days. This result means that even if a bridge is designed and constructed according to design standard, the bridge can have cracks due to various variables such as drying shrinkage, hydration heat and creep that produce stress in slab.

  • PDF

Effect of discontinuous mixture gas feeding on effective hydrogen production in a steam reformer frommethane (효율적 수소 생산을 위한 메탄 수증기 개질 반응기에서의 불연속적 가스 유입의 영향)

  • Lee, Shin-Ku;Park, Joon-Guen;Lim, Sung-Kwang;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.25-28
    • /
    • 2008
  • Steam reforming reaction is a matured technology to get hydrogen from hydrocarbon fuels compared with other reforming reactions such as partial oxidation(POX), autothermal reforming(ATR). It is so endothermic that it needs heat source to activate the reaction. Due to the reaction characteristics, heat transfer limitation phenomena generally occur in the steam reformer. As one of new ideas, the effect of discontinuous gas feeding is investigated based on heat transfer characteristics. The new operating method is usually favorable at high GHSV region(i.e. over $10,000h^{-1}$). In order to numerically simulate the physical issues, numerical approach is adopted based on heterogeneous reaction model, two-equation model in energy equation, and other constitutive models in porous media.

  • PDF

An Experimental Study on Heat Transfer Characteristics of a Ripple Tube (RIPPLE TUBE의 열전달(熱傳達) 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Choi, Seong Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.316-326
    • /
    • 1990
  • The measurements of heat transfer and pressure drop were performed on ripple tube with air flow. The results with the tube were compared with the performance of smooth tube. The enhancements in heat transfer coefficient for ripple tube, being compared with smooth tube, was ranged from 7.4 to 39 percent. The local Nusselt number for the inner fin tube, being compared with that for smooth tube, varied from 7.4% to 39%, while the corresponding increase in friction factors were 4.1 to 8.1%. One of the most direct indications of Nusselt number of ripple tube is given as following equation: $$Nu=0.061Re^{0.75}Pr^{0.4}(Tb/Tw)^{0.5}$$ We can see that Nusselt number for ripple tube in this experiment is consistent with the theoretical one taken from Walkinson's equation at Reynolds number range from 8,000 to 20,000.

  • PDF

A Study on Numerical Analysis for Heat Transfer and Flow Characteristics in a Ribbed Tube (열교환기 내 리브드 튜브의 열전달 및 유체유동에 관한 수치 해석적 연구)

  • Jeon, Jeong-Do;Jeon, Eon-Chan;Jeung, Hui-Gyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.134-139
    • /
    • 2011
  • This study was conducted on the characteristics of fluid flow and heat transfer in the ribbed tube used for a steam power plant. It was assumed that the air is incompressible and therefore, its density is not variable according to temperature. In addition, the gravity was ignored. A commercial code of computational fluid dynamics was used and standard k-$\epsilon$ model was used together with the energy equation included to calculate heat transfer. As Reynolds No. was low at the velocity distribution in the axial direction, the air reached hydro-dynamically fully developed region shortly but high Reynolds No. yielded late full hydro-dynamic development. The velocity distribution and non-dimensional temperature distribution were all physically reasonable and thus had a good agreement with the experimental result.