• Title/Summary/Keyword: heat emission

Search Result 921, Processing Time 0.022 seconds

A Study on Emission Characteristics of Inserting CO Tube (CO튜브 삽입에 따른 오염 물질 배출특성에 관한 연구)

  • Lee, Jae-Park;Kim, Jong-Min;Lee, Seung-Ro;Lee, Chang-Eon
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.182-187
    • /
    • 2010
  • This study was the effect of inserting CO tube on $NO_x$ and CO emission characteristics in a compact combustion chamber. In detail, $NO_x$ and CO emission characteristics with changing of distance due to inserting CO tube between a burner and a main heat exchanger were investigated. For this study, the commercial program, FLUENT with GRI 2.11 detail reaction mechanism, was used for the numerical study and a commercial heat exchanger was tested for the experimental study. As results, when the CO tube was inserted between a burner and a main heat exchanger, it was verified that $NO_x$ and CO emissions was decreased simultaneously as CO tube was closed to a burner and the distance between CO tube and a main heat exchanger was increased.

Characteristics of Elastics Waves of Fiber-Reinforced Plastic with Localized Heat Damage (국부 열손상을 받은 복합재료의 탄성파특성)

  • 남기우;김영운
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.48-53
    • /
    • 2002
  • Fiber-reinforced composites are extensively used in electronic, ship and aerospace applications due to their high strength and high toughess. In these applications, they are often subjected to localized heat damage due to various sources. In order to ensure their reliability, it is important to predict their residual properties using nondestructive evaluation thchniques. Fabric fiber composite specimens were manufactured with six layers of the glass-fiber prepreg and the carbon-fiber prepreg, respectively. The specimens were subjected to a localized heat damage using a heated copper tip with a diameter of 10mm at 35$0^{\circ}C$(CFRP) and 30$0^{\circ}C$(GFRP), respectively. The specimens were then subjected to tension tests while acoustic emission (AE) activities of specimens were collected. The AE activity of all specimens showed three types of distinct frequency regions. Those are matrix cracking, failure of the fiber/matrix interface and fiber breakage.

Study on Friction Welding of Heat Resisting Steel Materials of SUH3 and SUH35, and Its Real Time Evaluation by AE (내열강재 SUH3과 SUH35의 마찰용접 특성과 AE에 의한 실시간 평가)

  • 양형태;오세규;황성필;김일석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.12-19
    • /
    • 2000
  • In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also development of in-process real-time weld quality(such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve(SUH3-SUH35 dissimilar steels of 12.3mm, 16mm, 20mm and 24mm in diameters) were performed, comparing with the other FRW matches of materials such as SUH3 to SUH31, SUH3 to STS303 and SUH3 to STS304. As an important result, the techniques for dissimilar friction welding optimization of engine heat resisting steels SUH3 and SUH35( 12.3mm, 16mm, 20mm, 24mm) and its real-time weld quality evaluation by AE were developed, considering on both diameter and carbon equivalent effects.

  • PDF

Study on Optimization of Dissimilar Friction Welding of Nuclear Power Plant Materials and Its Real Time AE Evaluation (원자력 발전소용 이종재 마찰용접의 최적화와 AE에 의한 실시간 평가에 관한 연구)

  • 권상우;오세규;유인종;황성필;공유식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.42-46
    • /
    • 2000
  • In this paper, joints of Cu-1Cr-0.1Zr alloy to STS316L were performed by friction welding method. Cu-1Cr-0.1Zr alloy is attractive candidate as nuclear power plant material and exibit the best combination of high sts good electrical and thermal conductivity of any copper alloy examined. The stainless steel is a structural material who alloy acts as a heat sink material for the surface heat flux in the first wall. So, in this paper, not only the develop optimizing of friction welding with more reliability and more applicabililty but also the development of in-process rear quility(such as strength and toughness) evaluation technique by acoustic emission for friction welding of such nuclear component of Cu-1Cr-0.1Zr alloy to STS316L steel were performed.

  • PDF

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn C. H.;Kim Y. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.65-70
    • /
    • 1999
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. The averaged radiative heat flux reaching the base plane is about $5kW/m^2$ at the flight altitude of 10.9km. This value is small compared with radiative heat flux caused by constant-temperature (1500K) plume emission, but it is not negligibly small. At higher altitude (29.8km), view factor between the babe plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000K) due to convective heat transfer.

  • PDF

Correlation Analysis of the Thermal Conductivity Heat Flow Meter and MTPS (Modified Transient Plane Source) Method Using Wood Flooring and Wall Materials (목질마루바닥재와 벽체용 재료를 이용한 평판열류계법과 MTPS (Modified Transient Plane Source)법의 열전도율 상관관계 분석)

  • Cha, Jung-Hoon;Seo, Jung-Ki;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.2
    • /
    • pp.118-125
    • /
    • 2011
  • These days global warming is the most important problem and the most important factor is high emission of carbon dioxide. The 23% of carbon dioxide emission for building construction must be reduced. Thermal conductivity is the most basic factor that can decrease the energy consumption especially insulation. Therefore, an accurate and continuous thermal conductivity measurement can be a way to save energy. In this paper, there are methods about how to investigate thermal conductivity measurements and comparing two methods which are the Heat Flow Meter 436 and TCi.

  • PDF

Study on Friction Welding of Heat resisting Steel Materials and Its Real Time Evaluation by AE (내열강재의 마찰용접과 AE에 의한 실시간 평가)

  • 김일석;공유식;황성필;김헌경;이연탁;오세규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 2001
  • In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also the development of in-process real-time weld quality (such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve (SUH3-SUH35 dissimilar steels of 12.3mm, 16mm, 20mm, and 24mm in diameters) were performed, comparing with the other FRW matches of materials such as SUH3 to SUH31, STS303 and SUH3 to STS304. As an important result, the techniques for dissimilar friction welding optimization of engine heat resisting steels SUH3 and SUH35 (12.3mm, 16mm, 20mm, and 24mm) and its real-time weld quality evaluation by AE was developed, considering on both diameter and carbon equivalent effects.

  • PDF

Modeling of transient temperature distribution in multilayer asphalt pavement

  • Teltayev, Bagdat B.;Aitbayev, Koblanbek
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.133-152
    • /
    • 2015
  • Mathematical model has been developed for determination of temperature field in multilayer pavement and subgrade, which considers transfer of heat by conduction and convection, receiving of heat from total solar radiation and atmosphere emission, output of heat due to the emission from the surface of pavement. The developed model has been realized by the finite element method for two dimensional problem using two dimensional second order finite element. Calculations for temperature field have been made with the programme realized on the standard mathematical package MATLAB. Accuracy of the developed model has been evaluated by comparison of temperatures, obtained theoretically and experimentally. The results of comparison showed high accuracy of the model. Long-term calculation (within three months) has been made in pavement points in accordance with the data of meteorological station for air temperature. Some regularities have been determined for variation of temperature field.

A Basic Study on Urban Radiation Heat Transfer (도시의 방사전열에 관한 기초 연구)

  • Kim, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.35-43
    • /
    • 2002
  • This research makes that quantitative radiation property of an actual town ward is obtained in quest of the parameter with regard to a radiation heat transfer property and set up several town ward models that reproduced a solid form of a city along the attribute of the city. A regular trend possibility that is able to evaluate a radiation characteristics of a town ward quantitatively from a town ward guideline and confirmation that is produced about each parameter as a result of a numerical value simulation it obtained. This research shot a coefficient of Gebhart's emission absorption. sky radiation absorption rate direct solar radiation absorption rate the parameter with regard to a radiation heat transfer characteristics of a town ward in each town ward model and a volume rate of a town ward advances case study under regular such condition and shot the absorption rate, direct and others days and calculated an absorption rate and checked about the relation between a town ward and each radiation heat transfer property of a city.

Emission and heat recovery characteristics of heat recovery and combustor-type CO2 generator for greenhouses (온실용 축열 연소기형 이산화탄소 발생기의 배기 및 열회수 특성)

  • Choi, Byungchul;Lee, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.52-59
    • /
    • 2014
  • The purpose of this study is to evaluate the performance of after-treatment equipment and thermal storage devices for a heat recovery and combustor-type $CO_2$ generator fuelled a kerosene. To reduce the levels of harmful exhaust gases produced by a $CO_2$ generator, a catalyzed particulate filter(CPF) has been selected as an after-treatment device, by considering back pressure and exhaust gas temperature. The CO conversions of the catalyzed SiC filter(full plugging) were 92%, and the concentration of PM(particulate matter) was near ambient. A thermal recovery device was used to recover 13% of the heat energy from the exhaust gas through heat exchangers installed on the exhaust line of the $CO_2$ generator. 69% of the moisture within the exhaust gases was removed by condensing water, in order to minimize excessive humidity within the greenhouse.