• Title/Summary/Keyword: heat efficiency

Search Result 3,212, Processing Time 0.034 seconds

Optimal Flow Design of High-Efficiency, Cold-Flow, and Large-size Heat Pump Dryer (히트펌프를 이용한 고효율 냉풍 대형 건조기 유동 최적설계)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.547-552
    • /
    • 2011
  • Drying process, corresponding to a final process in the area of food engineering, requires a lot of heat energy. Thus, the energy efficiency is very important for dryers. Since the energy efficiency of heat pump dryers is much higher compared to that of electric dryers or other types of dryers, most of large-capacity dryers are adopting heat pump. In this study, shapes, positions and number of air-circulating fans, guide vanes, air inlet, outlet and top separator were varied for optimization of the flow of a large-capacity heat pump dryer. In addition, fans were modelled with performance curves and porous media were assumed for foods and heat exchangers. The simulation results were applied to the 12-ton dryer and the velocity distributions were experimentally examined. Finally, uniform drying in time was successfully accomplished through frozen pepper experiment.

Drying Performance Simulation for the Basic Design of a Heat Pump Dryer (열펌프 건조기의 기본 설계를 위한 건조 성능 해석)

  • Lee, Kong-Roon;Kim, Ook-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.860-867
    • /
    • 2007
  • Heat pump drying has a great potential for energy saving due to its high energy efficiency in comparison with conventional air drying. In the present study, the performance simulation for the basic design of a heat pump dryer has been carried out. The simulation includes one-stage heat pump cycle, simple drying process using the drying efficiency. As an example, the heat pump cycle with Refrigerant 134a has been investigated. For the operating conditions such as the average temperature of the condenser, the heat rate released in the condenser, the flow rate of drying air, and drying efficiency, the simulation has been carried out to figure out the performance of the dryer. The parameters considered in the design of the dryer are COP, MER, SMER, the rate of dehumidification, the temperature and humidity of drying air and those parameters are compared for different conditions after carrying out the simulation.

Second law thermodynamic analysis of nanofluid turbulent flow in heat exchanger

  • K. Manjunath
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.125-136
    • /
    • 2022
  • Entropy generation along with exergetic analysis is carried out using turbulent nanofluid flow in the heat exchanger. To obtain the optimized percentage constituent of nanofluid, the nanofluid volume concentrations is varied for the given input conditions. For different Reynolds number of the fluid and heat capacity rate ratio between the streams, the heat transfer improvements are studied in terms of nano particles diameter. Parametric analysis is carried out for a counterflow heat exchanger using turbulent nanofluid flow with exergetic efficiency along with entropy generation number as performance parameters. The exergetic efficiency provides realistic approach in the design of nanofluid applications in heat exchanger leading to conservation of energy.

A Study on High Efficiency Geothermal Heat Pump System by Improving Flow of Heat Exchanger (열교환기의 흐름개선을 통한 고효율 지열 히트펌프 시스템에 관한 연구)

  • Ahn, Sung-Hwan;Choi, Jae-Sang;Kim, Sang-Bum;Ahn, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.42-46
    • /
    • 2017
  • As $CO_2$ emission with imprudent using fossil fuel, annual mean temperature of earth is increased in every year. Geothermal energy is inexhaustible energy resource to solve this problem. Heat pump performance and heat exchange efficiency of ground loop are important to distribute widely. Thus, this study are performed to increase heat pump performance and heat exchange efficiency of ground loop with dual expansion valves and spacer. As a results, COP of cooling & heating is obtained improvement up to 11.4% using dual expansion valves, and heat exchange efficiency is increased up to 17.5% using spacer. It will be reduced initial installation cost due to increasing heat pump performance and heat exchange efficiency of ground loop.

A Numerical Simulation of Heat and Fluid Flow for Predicting the Effect of Passage Arrangement in Automotive Heat Battery (자동차용 열전지에서 유로배열 효과 예측을 위한 열유동 수치묘사)

  • Lee, K.S.;Kwon, J.W.;Baek, C.I.;Song, Y.K.;Han, C.S.;Kim, D.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.64-73
    • /
    • 1995
  • A numerical simulation of heat and fluid flow for predicting the effect of passage arrangement in automotive heat battery has been performed. The system is assumed to be a two-dimensional laminar flow and isothermal boundary is applied to the surface of the latent heat storage vessel. In the case of ideal heat battery the flow rate into each flow passage is evenly distributed. The various models are considered in the view of pressure drop and bulk temperature. The effects on the efficiency of the heat battery are examined by varying geometrical factors such as flow passage clearance, length of a inlet and outlet tank and the length of a latent heat storage vessel. The flow clearance is a very important -factor on the efficiency of a heat battery. As the flow passage clearance becomes narrow, the flow distribution becomes uniform and the bulk temperature increases, however the pressure drop is large. Therefore, optimal flow passage clearance has to be chosen. The present work can be used in optimizing heat battery efficiency.

  • PDF

Numerical Investigations of Enhancement of a Convective Fin Efficiency by Convection-Radiation Gonjugate Heat Transfer (대류-복사 복합 열전달을 고려한 대류 핀효율의 향상에 관한 수치적 연구)

  • 이동렬;김호용;이재곤;박용국;김기대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.146-154
    • /
    • 2001
  • In almost all real situations, there will be a radiant interchange between adjacent fins with the base surface as well as with the external environment. In the problem of this study, a rectangular fin is attached to a based. Our concern is whether the convective fin efficiency can be increased by the radiation heat exchanged between the fin and the base surface and how much. If the fin temperature toward the tip increased by the effect of radiation, the convective heat transfer increase due to the temperature difference between the ambient temperature and the surface temperature of the fin. If this true, the efficiency of the fin due to the radiation will increase. Attention is directed toward several parameters which have major roles on getting values of the fin efficiencies in several different values of parameters. Many different cases are, therefore, to be examined to have maximum fin efficiency by varying the values of each parameter.

  • PDF

DEVELOPMENT OF HIGH EFFICIENCY COGENERATION SYSTEM USING BIOGAS FOR THE LOWER POLLUTION OF THE ENVIRONMENTAL

  • Park, J.S.;Ishii, K.;Terao, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.670-675
    • /
    • 2000
  • The purpose of the study is development and investigation about basic performance of the system operation on a dual fueled cogeneration system(CGS), which is operated with biogas and gas oil. As often seen in dual fueled CGS performance, the electric generating efficiency was obtained about 26□. Methane contained in the biogas could not bum completely at lower load, and it was discharged into exhaust gas. Considerable amount of the methane burned in the exhaust pipe, and the heat recovery ratio was 42□ on heat balance. As a result, the total heat efficiency, which is a summation of generating efficiency and heat recovery efficiency reached to about 70□. The supply of biogas into the engine reduces smoke density and NOx concentration in exhaust gas. At lower load, methane burned slowly and large portion of it was discharged without burning. Therefore the measures are desirable that promotes combustion of methane at lower load.

  • PDF

Development of Heat Pump System for High Efficiency Engine Vehicle (고효율엔진 차량 히트펌프 시스템 개발)

  • Park, Byung-Duck;Won, Jong-Phil;Lee, Won-Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • As DDI or GDI engine discharges very low heat due to its high thermal efficiency, the heat source is not enough for heating the passenger compartment in cold climate condition. To remedy the heating problem, the conventional HFC-134a automotive air-conditioning system has been attempted to run as a heat pump mode. Futhermore, an auxiliary electric heater of new type was equipped to the heat pump air-conditioning loop as a new approach. Hence, a proto-type heat pump air conditioner has been made and tested to investigate the feasibility of the HFC-134a automobile air-conditioning system that could be worked as a heat pump. The experiment results showed that the sufficient heating capacity could be obtained by adding a heat pump with an new electric type auxiliary heater into the conventional heat core in low temperature condition.

  • PDF

An Experimental Study on the Heat Exchange Performance at Various EGR Cooler Types (EGR 쿨러 Type에 따른 열교환성능에 관한 실험적 연구)

  • Shon, Jungwook;Woo, Seungchul;Park, Jongwook;Chun, Taesoo;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.608-614
    • /
    • 2015
  • Nitrogen oxide(NOx) emission reductions are required to meet the strict emission regulations for environmental protection. Most of the Exhaust Gas Recirculation(EGR) system applied to a diesel engine can relatively decrease the NOx at a low cost, but it has a disadvantage in that the PM generation is promoted due to the hot intake air temperature. Thus, high heat exchange efficiency of the EGR cooler is required for an effective removal of NOx. In this study, heat exchange efficiency for various types of heat exchangers used in EGR cooler was measured under same conditions, and determined best heat exchange performance shape depending on type of heat exchanger.

Design of Rankine Steam Cycle and Performance Evaluation of HT Boiler for Engine Waste Heat Recovery (엔진 폐열 회수를 위한 랭킨 스팀 사이클 설계 및 HT Boiler의 성능 평가)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Dong-Hyuk;Lee, Heon-Kyun;Kim, Tae-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.21-29
    • /
    • 2012
  • A dual loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop (HT loop) only recovers the heat of the exhaust gas. A low temperature loop (LT loop) recovers the residual heat from the HT loop, the coolant heat and the remaining exhaust gas heat. The two separate loops are coupled with a heat exchanger. This paper has dealt with a layout of the dual loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the HT boiler, a core part of a HT loop, have been presented. The prototype of the HT boiler was evaluated by experiment. For the performance evaluation of the HT boiler, inlet temperature of the HT boiler working fluid was set equal to the temperature degree of sub-cool of $5^{\circ}C$ at the condensing pressure. The exit condition was the degree of super-heat set at $5^{\circ}C$. The characteristics of the HT boiler such as heat recovery and pressure drops of fluids were evaluated with varying flow rates and inlet temperatures of exhaust gas under various evaporating pressure conditions.