• Title/Summary/Keyword: heat durability

Search Result 476, Processing Time 0.03 seconds

Effect of the factor developing the Heat of Hydration on Durability Design in the Subway Concrete Structure (수화열 발생인자가 지하철 콘크리트 구조물의 내구설계에 미치는 영향)

  • Lim Young-Su;Kim Eun Kyum;Sung Ki Han
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1131-1137
    • /
    • 2004
  • With the recent continuous expansion of subways, newly created subways tend to have lower locations and wider sections. Furthermore. since box structures and evacuating tunnels are classified into a category of mass-concrete. the thermal-stress, emitted from the inside. causes cracks to structures from the inception of constructing. In this paper, thermal-stress analysis and durability evaluation of box structure were carried out to investigate relationship between durability and parameter causing the heat of hydration. Through the examination, this paper tries to find out satisfactory solutions to regulated thermal crack and ensure the required duration period. The results of this paper showed that to control thermal crack and guarantee the required duration period it was more effective to use low-heat-portland cement and moderateheat-portland cement. As cement volume due to reduction of water-cement ratio increased, the possibility of thermal cracks occurrence increased but results of durability evaluation was different depending on evaluation method. The results showed that the appropriate water-cement ratio to control the heat of hydration and satisfy the required durability was $45\∼55\%$. And it was showed that during placement of concrete blocks ambient temperature affect the heat of hydration. thermal crack and long-term durability largely and when concrete was placed at low temperature to control thermal crack. it need to try to guarantee the required duration period. Henceforth, by studying not only internal and external conditions, such as the relative humidity and the unit weight. but also methods, to evaluate durability, in accordance with domestic situations, more reasonable design of durability should be achieved.

  • PDF

Thermal Durability Analysis Due to Material of Radiator Fan (라디에이터 팬의 재질에 따른 열 내구성 해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.789-794
    • /
    • 2013
  • In this study, the temperature, heat emission per unit time, and thermal stress or deformation of a radiator fan made of polyethylene or aluminum are analyzed for investigating its strength durability. Heat transfer in the case of the aluminum radiator fan is better than that in the case of the polyethylene radiator fan. Further, heat emission in the case of the aluminum fan is poorer than that in the case of the polyethylene fan. Moreover, because the thermal deformation of aluminum is much smaller than that of polyethylene, the thermal durability of the aluminum fan is better than that of the polyethylene fan. In an open space in front of the radiator and the closed space of the engine behind it, the thermal cooling effect of the polyethylene fan is better than that of the aluminum fan. Further, since polyethylene is lighter in weight than aluminum, polyethylene, as a nonmetallic plastic, is more suitable as a material of an automotive radiator. However, because of the higher strength durability of the aluminum fan, it is better than the polyethylene fan under high-temperature conditions or in the case of a complex pipe.

Study on Analysis of Heat Dissipation due to Shape of Motorcycle Disc Brake (모터사이클 디스크 브레이크 형상에 따른 방열해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.100-107
    • /
    • 2013
  • This study aims to improve the heat performance of motor cycle disk due to the number of holes by analyzing 6 kinds of disk models. This disk performance depends on the efficiency at emitting the heat. To raise the efficiency of heat emission, holes with circle or another configuration are made on disks to emit heat fast. The distribution of temperature, heat flux, deformation and stress are analyzed. As the number of holes on disk increases, the performance of heat emission is improved. Equivalent stress is decreased and durability is improved as the number of holes on disk increases. Though the number of holes on disk is increased, the performances of heat emission and durability do not become better. The optimal model can be found by comparing models each other through this analysis result. Through this study result, the configuration of motor cycle disk is designed with optimal heat emission and durability by comparing models.

Evaluation on the Properties of Ternary blended Cement Concrete using Industrial Byproducts (산업부산물을 혼합하여 제작한 3성분계 시멘트 콘크리트의 성능 평가)

  • Kim, Chun Ho;Kim, Nam Wook
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2014
  • Nowadays, due to the development of industrial and civil engineering technology, enlargement and diversification of concrete structures are being tried. At the same time, the hydration heat generated during the construction of large structures lead to thermal crack, which is occurs causing a problem that durability degradation. In this paper, in order to study the durability and reducing hydration heat of concrete according to the types of cement, that is ordinary portland cement, fly ash cement mixed with a two-component, ternary blend cement mixed with fly ash and blast furnace slag and low heat cement concrete are produced, and compare and analyze the results using property, durability and hydration characteristics, ternary blend cement is appeared to be the most excellent in durability and reduction of hydration heat, and it was determined suitable for construction of mass concrete and requiring durability.

A Study on Durability Characteristics of Automobile Clutch Diaphragm Spring Steel According to Heat-Treatment Condition (자동차 클러치용 다이아프램 스프링 강(50CrV4)의 열처리 조건에 따른 내구특성에 관한 연구)

  • 남욱희;이춘열;채영석;권재도;배용탁;우승완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.137-143
    • /
    • 2000
  • An automobile clutch diaphragm spring is operating in a closed clutch housing under high temperature and subject to high stress concentration in driving condition, which frequently causes cracks and fracture. The material of spring is required to possess sufficient fatigue strength and tenacity, which depend largely on the condition of tempering heat treatment. In this paper, specimens are made under a number of different tempering temperatures md tested to find the optimal tempering heat treatment condition. The experiments include the verification of microscopic structure, hardness, tensile strength, fatigue crack growth rate, stress intensity factor range and residual stress. Also, decarbonization, which occurs in actual heat treatment process, is measured and allowable decarbonization depth is studied by durability test.

  • PDF

Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete (초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델)

  • 조호진;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

FRICTION AND WEAR BEHAVIOR OF DIRECT METAL DEPOSITION ON SUH3

  • BYUNGJOO CHOI;IN-SIK CHO;DO-HYUN JUNG;MOON G. LEE;YONGHO JEON
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.841-844
    • /
    • 2019
  • Poppet valves made from high-frequency heat-treated SUH3 steel have insufficient durability, and scratches appear on the valve face in prolonged use. It is necessary to develop surface treatment technology with excellent durability to prevent the deterioration of engine performance. Therefore, a surface treatment technology with higher abrasion resistance than existing processes was developed by direct metal deposition to the face where the cylinder and valve are closed. In this study, heat pretreatment and deposition tests were performed on three materials to find suitable powders. In the performance evaluation, the hardness, friction coefficient, and wear rate were measured. Direct metal deposition using Inconel 738 and Stellite 6 powders without heat pretreatment were experimentally verified to have excellent durability.

A Study on the Performance Evaluation Method of Waterproofing-Seal as Leakage Cracks Repairing Material using on the Underground Structure (지붕용 톱코팅재의 내구성 향상에 관한 성능 및 평가방법에 관한 기초적 연구)

  • Park, Jin-Sang;Kang, Hyo-Jin;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.517-520
    • /
    • 2006
  • The waterproofing of Building on the roof has been exposed more underground or the other part of waterproofing than environmental factor(solar heat, UV, salt, acid rain, wind, temperature, snow, rain, etc.) or physical factor. So it must be have a waterproofing performance and it has a special technique for the maintaining of concrete durability. Therefore, exposed waterproof layer has to protected from UV, solar heat, rain and the outside environment also, to endurance durability methods spread face plate topcoat material on the waterproof layer. But, actuality faceplate waterproof layer of topcoat materials are unbearable to UV, solar heat and moisture etc. and it doesn't have adhesion with waterproof layer in the middle. So it happens to crack, separating and heaving etc. Therefore, in the study, we will suggest that using of the exposed roof waterproof layer topcoat materials test method manage rooftop waterproof layer for the durability and the stability.

  • PDF

Experimental study on the hydrophilic performance of pre-coated aluminum foil (알루미늄 호일의 친수코팅 성능 개선에 관한 실험적 연구)

  • 김영생;길용현;박환영;윤백;김자수소;김병열
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.725-732
    • /
    • 1999
  • It is usual to use hydrophilic-coated aluminum foil for evaporator fin of air-conditioners to reduce air flow resistance caused by the water droplets condensed on the fin surface. The major effect of a hydrophilic coating is to reduce the contact angle of the condensate and prevent bridging of the condensate between the adjacent fins. The performance of hydrophilic coating generally tends to be degraded as it is used since the coating material is washed down by the condensate. In the present work, several types of hydrophilic coatings were evaluated in terms of durability of hydrophilicity, corrosion resistance and heat resistance. Results showed that an improved hydrophilic coating of resin type presented superb qualify in terms of durability and corrosion resistance while having almost the same level of qualify in heat resistance compared with the others.

  • PDF

A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine (엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구)

  • 류택용;신승용;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF