• Title/Summary/Keyword: heat dissipation

Search Result 513, Processing Time 0.024 seconds

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

The Paint Prepared Using 2D Materials: An Evaluation of Heat Dissipation and Anticorrosive Performance

  • Bhang, Seok Jin;Kim, Hyunjoong;Shin, An Seob;Park, Jinhwan
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • Heat sinks are most widely used in thermal management systems; however, the heat dissipation efficiency is usually limited. Therefore, in order to increase heat dissipation efficiency of the heat sink, the heat-dissipating paint using 2D materials (hexagonal boron nitride (h-BN) and graphene) as thermally conductive additive was designed and evaluated in the present study. The heat dissipation performance of the paint was calculated from temperature difference between the paint-coated and -uncoated specimens mounted on the heat source. The highest heat dissipation performance was obtained when the ratio of h-BN to resin was 1/10 in the paint. In addition, further reduction in the temperature of the test specimen by 6.5 ℃ was achieved. The highest heat dissipation performance of the paint prepared using graphene was achieved at a 1/50 ratio of graphene to the resin, and a 6.5 ℃ reduction was attained. In addition, graphene exhibited enhanced corrosion resistance property of heat-dissipating paint by inhibiting the growth of the paint blisters.

Energy and Entransy Characteristic Analysis of Heat Exchangers Depending on Heat Exchanger Type (열교환기 형식에 따른 열교환기의 에너지 및 엔트랜시 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN;HAN, CHUL HO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.112-121
    • /
    • 2020
  • In this work energy and entransy characteristics of heat exchangers are analyzed for 12 different flow arrangements of heat exchangers. The dimensionless parameters are number of entransy dissipation (Ng), number of entransy dissipation-based thermal resistance (Nr), and entransy dissipation-based effectiveness of heat-exchanger (εg). The dimensionless parameters are expressed analytically in terms of the effectiveness of heat exchanger (ε), heat capacity ratio (c), and number of transfer unit (N) for optimal performance of heat exchangers. Results showed that the dimensionless parameters based on the entransy dissipation can be useful concepts for optimal design of heat exchangers.

Study on Heat Dissipation Characteristics of LED Frames Using Finite Elements Method (유한요소해석을 이용한 LED 프레임의 열전달 특성에 관한 연구)

  • Son, In-Soo;Kang, Sung-Jung;Jeon, Bun-Sik;Ahn, Sung-Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.935-941
    • /
    • 2020
  • In this study, the effect of different shapes on the heat dissipation characteristics of other porous frames on LED lighting frames was studied using finite element analysis. In addition, the heat transfer characteristics of LED frames were tested using a thermal imaging camera and the results of finite element analysis were compared to derive the optimal hole shape. According to the study, the heat dissipation effect was better for frames with hole compared to existing ones without holes. In particular, the heat dissipation characteristics test showed that for frames with holes, the rise time to the maximum temperature is fast and the maximum temperature is significantly lower. Also, we could see that the square and diamond shapes were smaller than the circular pores, but had a greater heat dissipation effect. Through this study, we have concluded that there is a limit to increasing the heat dissipation effect of the frame with a perforated shape, and it is necessary to conduct further research on the change in the shape of the frame in order to achieve a better heat dissipation effect in the future.

Thermal Analysis for Improvement of Heat Dissipation Performance of the Rail Anchoring Failure Detection Module (레일 체결구 결함 검측 모듈의 방열성능 개선을 위한 열 해석)

  • Chae, Won kyu;Park, Young;Kwan, Sam young;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, various heat dissipation designs for a rail anchoring failure detection module were investigated by a thermal flow analysis. For the detection module with the heat dissipation design on the overall housing surface, an average temperature inside the module was lowered by $25^{\circ}C$ when compared to no heat dissipation design. In addition, an internal heat-flow blocking layer and an heat conduction layer inserted between the LED module and housing case were effective in reducing the temperature in the rail anchoring failure detection, which has a limited space for installation and little air flow. Especially, the temperature near LED module decreased below $55^{\circ}C$ when the optimal heat dissipation design was applied.

Design of the Heat Dissipation Rate of Automotive Radiation (I) Analysis of Heat Dissipation (자동차용 라디에이터의 방열성능설계에 관한 연구 (I)방열성능의 해석)

  • 정종수;이춘식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-75
    • /
    • 1989
  • A method for analyzing the heat dissipation rates of automotive radiators has been proposed and also a new model equation of heat transfer rate of louvered fins has been proposed and tested. With the method, the effect of various design parameters on the performance of a radiator has also been studied. The proposed model equation for air-side heat transfer has made fair predictions which agree well with the experiments. Also the design value of heat dissipation rate with various fin pitches and radiator size has a good agreement with the heat dissipation of the commercial automotive radiators. Thus, the method of analyzing the radiator performance proposed in this study might be used to design new automotive radiators.

  • PDF

An effect of Radiation Heat Transfer on the Thermal Dissipation from the Electronic Chip in an Enclosure (밀폐공간에 놓인 전자 칩의 열발산에 복사 열전달이 미치는 영향)

  • Choi, In-Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.179-186
    • /
    • 2009
  • Electronic components in an enclosure have been investigated to prevent undesired thermal problems. The electronic devices, such as ECUs of automotive engines, are operated under the contaminated environments, so that they rely on the passive cooling without any fluid-driving methods. Therefore the radiation heat dissipation plays more important role than the conduction and convection heat transfer. Hence their combined heat dissipation phenomena have been simulated by a numerical model to reveal the effects of supplied heat flux, emissivity of material, geometry of enclosure, charging gas and pressure. The result showed that the radiation had a significant effect on the heat dissipation of module in an enclosure, and some space above the module should be reserved to prevent its thermal problem. In addition, the higher thermal conductivity and pressure of gas in an enclosure could be necessary to improve the thermal dissipation from the electronic devices.

  • PDF

Minimum Heat Dissipation of HTS Current Lead Having Partial Current Sharing Region (일부 전류분류영역을 가짐으로서 최소 열손실을 갖는 초전도 전류도입선)

  • Seol, S.Y.;Her, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.131-136
    • /
    • 2001
  • In this paper, a high-temperature superconductor(HTS) current lead operating in current sharing mode is described. The minimum heat dissipation and the optimum safety factor(cross-sectional area) is obtained analytically for partial current sharing HTS leads. It is assumed that the current lead is in conduction cooled state, and the sheath material is the alloy of silver and gold. The reduced cross-sectional area results partial current sharing state, and consequently reduces conduction heat transfer, but the Joule heat generation is increased. The optimized HTS current lead is different from the conventional copper leads. In the copper leads, the minimum heat dissipation is obtained for the zero gradient of temperature at warm end. However, the temperature gradient at warm end is not zero when the HTS lead operates at minimum dissipation state.

  • PDF

Design of a Heat Dissipation System for the 400kW IGBT Inverter (400kW급 IGBT 인버터용 방열 시스템 설계)

  • 이진우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.350-355
    • /
    • 2004
  • This paper deals with the design of a heat dissipation system, which consists of a heat source of power semiconductor devices, a heat sink ;md a fan for the forced air cooling. It suggests the method of appropriately dividing the whole heat transfer system into analytical subsystems and also presents the correspondent analytic or experimental design equations for the subsystems. The experimental results on the designed heat dissipation system for the 400kW IGBT inverter show less than 10[%] error with respect to the design temperature and therefore verify the validity of the proposed analytical design method in the steady state.