• Title/Summary/Keyword: heat convection

Search Result 1,308, Processing Time 0.031 seconds

NUMERICAL ANALYSIS FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE HAVING A VERTICAL THERMAL GRADIENT WITH A SQUARE INSULATOR INSIDE

  • Lee, Jae-Ryong;Park, Il-Seouk
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.283-296
    • /
    • 2012
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body in the center is studied. Three different Prandtl numbers (0.01, 0.7 and 7) are considered for the investigation of the effect of the Prandtl number on natural convection. Adiabatic boundary conditions are employed for the side walls. A two-dimensional solution for unsteady natural convection is obtained, using an accurate and efficient Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10_3$ to $10_6$. It had been experimentally reported that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. It was found that when Ra=$10_6$, only the case for intermediate Pr (=0.7) reached a non-changing steady state and the low and high Pr number cases (Pr=0.01 and 7) showed a periodically oscillatory fashion hydrodynamically and thermally. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers are presented to show the overall heat transfer characteristics in the system. Further, the isotherms and streamline distributions are presented in detail to compare the physics related to their thermal behavior.

NUMERICAL STUDY FOR PRANDTL NUMBER DEPENDENCY ON NATURAL CONVECTION IN AN ENCLOSURE WITH SQUARE ADIABATIC BODY (사각 단열체가 존재하는 밀폐계 내부에서 Pr수 변화에 따른 자연대류 현상에 대한 수치적 연구)

  • Lee, Jae-Ryong
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2011
  • The natural convection in a horizontal enclosure heated from the bottom wall, cooled at the top wall, and having a square adiabatic body at its centered area was studied. Three different Prandtl numbers (0.01, 0.7 and 7) were considered for an effect of the Prandtl number on natural convection. A two-dimensional solution for unsteady natural convection was obtained, using Chebyshev spectral methodology for different Rayleigh numbers varying over the range of $10^4$ to $10^6$. It had been experimentally and numerically reported [1,2] that the heat transfer mode becomes oscillatory when Pr is out of a specific Pr band beyond the critical Ra. In this study, we reproduced this phenomenon numerically. The variation of time- and surface-averaged Nusselt numbers on the hot and cold walls for different Rayleigh numbers and Prandtl numbers was presented to show the overall heat transfer characteristics in the system. And also, the isotherms and streamline distributions were presented in detail to compare the physics related to their thermal behavior.

Characteristics of Heat Transfer of Natural Convection for Magnetic Fluids in Annular Pipes (이중원관내 자성유체의 자연대류에 대한 전열특성)

  • Park, J.W.;Jun, C.H.;Seo, L.S.;Ryu, S.O.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • Compared with Newtonial fluids, magnetic fluids have effects on magnetic force. In this study, the purpose is to research the heat transfer characteristic of magnetic fluids which have metalic and fluid characteristics as the external pipe is being cooled and internal pipe is heated. This study found the experimental results from the study of the variety of natural convection for magnetic fluids and the characteristics of the heat transfer by using numerical analysis according to the strength and direction of the magnetic fields from being imposed from the outside. Natural convection of magnetic fluids was controlled by the impressed magnetic fields, and the result of mean nusselt number was calculated. If the impressed magnetic field is in the direction of gravity or the strength of impressed magnetic field is more than -14 mT in the opposite direction, the heat transfer is more than that without the impressed magnetic field. If the strength of impressed magnetic field is less than -14 mT in the opposite direction, it is smaller than that without the impressed magnetic field. Especially, when the strength of the magnetic field is -14 mT, the heat transfer was at the minimum.

A Study on the Heat Pump-Latent Heat Storage Type (열펌프-잠열축열 온돌 시스템 연구)

  • 송현갑;박문수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.385-390
    • /
    • 2001
  • The Ondol system using both air-to-water heat pump and PCM(Phase Change Material) was constructed, and the effects of ambient air temperature on COP(Coefficient of Performance) of heat pump, the amount of heat supplied to the Ondol in the heating process, the heat storage in the PCM and the variation of Ondol room temperature were analyzed. The results from this study could be summarized as follows: 1. The COP of the heat pump (3 PS) was in proportion to the ambient air temperature. 2. When the ambient air temperature was varied between -10$^{\circ}C$ and -7$^{\circ}C$, the air temperature in the Ondol room was maintained between 16$^{\circ}C$ and 22$^{\circ}C$. As the results, it was certified that the heat pump-latent heat storage type Ondol system could be a comfortable residential heating system in the winter. 3. The maximum radiation and convection heat transfer from Ondol surface was 206.2 kJ/㎥hr and 82.6 kJ/㎥hr respectively. As the results, it could be confirmed that the radiation was major heat transfer mechanism for the Ondol room heating.

  • PDF

A Study on the Heat Dissipation Characteristics of Layered Heat Sink for CPU Cooling (CPU 냉각을 위한 적층형 히트싱크의 방열 특성 연구)

  • Lee, Kyu-Chill;Kim, Joung-Ha;Yun, Jae-Ho;Park, Sang-Il;Choi, Yun-Ho;Kwon, Oh-Kyung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.182-187
    • /
    • 2006
  • This research presented the heat resistance characteristics of heat sink which is newly designed through the experiment. For the same volume and base plate of heat sinks, the experiment of heat transfer characteristics was conducted for forced convection of layered type heat sink. The heat transfer and pressure drop characteristics of the layered type heat sink were compared for the various kinds of fin pitches, fin heights and heights of heat sink. The results show that thermal resistance is decreased as the height of heat sink increases and the fin height and fin pitch decrease, From the experimental data of layered type heat sink, the correlation equation of Nusselt number was obtained as follows ; $$Nu=0.845{\cdot}Re^{0.393}{\cdot}(\frac{f_h}{D_h})^{0.160}{\cdot}(\frac{f_p}{D_h})^{0.372}{\cdot}(\frac{H_{hs}}{D_h})^{-0.942}$$

  • PDF

A study on the mixed-convection heat transfer characteristics of a simulated module on the bottom in the inclined channel (경사진 채널밑면에 탑재된 모사모듈의 혼합대류열전달 특성 연구)

  • Ryu, Kap-Jong;Lee, Jin-Ho;Jang, Jun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.433-439
    • /
    • 2001
  • An experimental study was carried out on the characteristics of the mixed-convection heat transfer from a protruding heat source module which had uniform heat flux and was located on a flat plate in the inclined channel. The effects of the inclined channel(${\varphi}=0{\sim}90^{\circ}$) was studied for the input power($Q=3,\;7W$) and inlet air velocities($V_{i}=0.1{\sim}0.9m/s$). Experimental results indicate that the input power was most effective parameter on the temperature differences between inlet air and module. The effects of the inclined angle was negligible when the inlet velocities were above 0.5m/s and 0.9m/s at Q = 3W, 7W respectively. As the inclined angle of the channel increases, the temperatures of the module are decreased. So we obtained the best condition on the adiabatic board at the vertical channel.

  • PDF

Optimization of an Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height (고정된 핀 바닥 높이에 기준한 비대칭 사다리꼴 핀의 최적화)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • Optimization of the asymmetric trapezoidal fin with various upper lateral surface slope is made using a two-dimensional analytic method. For the fixed fin base height, the optimum heat loss, fin length and effectiveness are represented as inner fluid convection characteristic number, fin base thickness, fin base height, fin shape factor and ambient convection characteristic number. For this optimum procedure, the optimum heat loss is defined as 95% of the maximum heat loss from the fin. One of the results shows that optimum heat loss and effectiveness seems independent of the fin shape factor while optimum fin length decreases almost linearly as the fin shape factor increases.

Prediction of temperature using equivalent thermal network in SPMSM (열 등가회로를 이용한 SPMSM 전동기의 온도 예측)

  • Kim, Do-Jin;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.792-793
    • /
    • 2008
  • This paper deals with the temperature calculation using equivalent thermal network for surface mounted permanent magnet synchronous motor(SPMSM) under the steady-state condition. In the equivalent thermal network, heat sources are generated from copper loss and iron loss. Heat transfer consists of conduction, convection and radiation. However, radiation is neglected in this paper because its effect is much smaller than others. Although the heat transfer coefficient in conduction use material property, heat transfer coefficient in convection is difficult to measure due to the atmosphere and ambient condition. Temperatures of each region in SPMSM are measured by thermocouple in operating condition and the thermal resistances of convection are calculated by kirchhoff's current law(KCL) and experimental result. In order to verify the validation and reliability of the proposed equivalent thermal network, temperature which is calculated other load condition is compared with experimental results. Accordingly, temperatures of each region in other SPMSMs will be easily predicted by the proposed equivalent thermal network.

  • PDF

NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER IN A NANOFLUID FILLED CONCENTRIC ANNULUS (동심이중관내 나노유체의 자연대류열전달에 관한 수치적 연구)

  • Choi, H.K.;Park, J.H.;Yoo, G.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, the homogeneous model is used to simulate the natural convection heat transfer of the CuO-water nanofluid in a concentric annular enclosure. Simulations have been carried while the Rayleigh number ranges from $10^3$ to $10^6$, solid volume fraction ranges from 0.01 to 0.04 and the radius ratio varies between 0.1 and 0.7. Results are presented in the form of streamlines, isotherm patterns and averaged Nusselt numbers for different values of solid volume fraction, radius ratio of the annulus and Rayleigh numbers. The results show that by decreasing the radius ratio and/or increasing the Rayleigh number, the averaged Nusselt number increases. Also the heat transfer rate increases as increased solid volume fractions.

A Study on the Characteristics of Natural Convection in a Partially Opened Enclosure with a Heat Source (발열체와 부분 열림 수직벽을 갖는 사각 공간 내 자연대류 특성 해석)

  • Sim, Dong-Sik;Gang, Bo-Seon;Cha, Dong-Jin;Ju, Won-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1588-1595
    • /
    • 2000
  • Natural convection heat transfer in an enclosure with an opening in the right veritcal wall and a heat source at the bottom surface is investigated using a holographic interferometric technique. The effects of the opening length, divider length attached to the top wall, and heater temperature on the temperature distribution are examined. The opening length as well as the divider length greatly affects the degree of inflow and outflow of air. In the case of small opening length, the opening doesnt affect much the upward warm air flow resulting in the symmetric temperature distribution .The upward flow in hindered by the divider resulting in the decrease of heat transfer from the heater region to the upper region. The longest divider shows the highest temperature in the lower region of enclosure. In the case of large opening length, the inward cold flow moves the upward flow to the left direction. Among the cases of different divider length, the case of H(sub)d=0.25H shows the highest temperature in the lower region of enclosure.