• Title/Summary/Keyword: heat combination

Search Result 687, Processing Time 0.023 seconds

Analysis of Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Refrigerator using the Hardy-Cross Method (Hardy-Cross법을 이용한 $CO_2$ 냉동기용 내부열교환기의 열전달 특성 연구)

  • Kang Hee-Dong;Kim Ook Joong;Seo Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The heat transfer characteristics of an internal heat exchanger for $CO_2$ refrigeration cycle are numerically investigated. The numerical model is verified using the published experimental results for the concentric tube type internal heat exchanger. The Hardy-Cross Method gives very good agreement between the calculation and experimental results on the heat transfer rates and exit temperatures. Also, appropriate combination of heat transfer correlations is found. The operating parameters of the heat exchanger are calculated at transcritical region of $CO_2.$ The heat transfer rate of the counter flow type heat exchanger shows the $32\%$ greater than that of the parallel flow type heat exchanger. The increase of heat exchanger length enhances the heat transfer rate. The thermodynamic characteristics and heat transfer coefficient of $CO_2$ in the internal heat exchanger are estimated.

Factors Affecting Performance of a Proto type Windheat Generation System

  • Kim Y.J.;Yun J.H.;Ryou Y.S.;Kang G.C.;Paek Y.;Kang Y.K.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.22-26
    • /
    • 2005
  • A wind-heat generation system was developed and the system consisted of an electric motor, a heat generation drum, a heat exchanger, two circulation pumps and a water storage tank. The heat generation drum is an essential element determining performance of the system. Frictional heat was generated by rotation of a rotor in the drum filled with a working fluid, and the heat stored in the fluid was used to increase water temperature through the heat exchanger. Effects of some factors such as rotor shape, kind and amount of working fluid, rotor rpm and water flow rate in the heat exchanger, affecting the system performance were investigated. Amounts of heat generated were varied, ranging from 126,000 to 32,760 kJ/hr, depending on combination of the factors. Statistical analysis using GLM procedure revealed that the most influential factor to decide the system performance was amount of the fluid in the drum. Experiments showed that the faster the speed of the rotor, the greater heat was obtained. The greatest efficiency of the heat generation system, electric power consumption rate vs gained heat amount of water, was about 70%. Though the heat amount was not enough for plant bed heating of a 0.1-ha greenhouse, the system would be promising if some supplementary heat source such as air- water heat pump is added.

  • PDF

Field Application of a Technique for Reducing Hydration Heat-induced Cracks in Mass Concrete (수화발열량차 공법을 이용한 매트기초 매스콘크리트 균열저감 및 현장적용)

  • Jo, Man-Ki;Kim, Jun-Ho;Heo, Young-Sun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.55-57
    • /
    • 2012
  • In this study, the field applicability on reducing the heat of hydration of mass concrete by using the hydration heat difference method is analyzed with the following summary. As a result of applying the hydration heat difference method by using low heating combination, the temperature difference between the central part and the surface part of mass material was reduced, and as a result of visual observation, there was no showing of cracks by the hydration heat on the upper surface part. Therefore, the cracking index of the field to apply this method was shown to be approximately 1.57 with very little crack occurrence probability of less than 3%.

  • PDF

Characteristics of Heat Transfer and Pressure Drop for Spirally Indented Tubes with Wire Coil Inserts (와이어 코일이 삽입된 나선형 내면가공관의 열전달 및 압력강하 특성)

  • Choi, In-Su;Park, Byung-Duck;Nam, Sang-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.395-401
    • /
    • 2001
  • The characteristics of heat transfer and pressure drop through tubes has been investigated experimentally for a compound heat transfer enhancement. The test tubes were spirally indented tubes with wire coil inserts which had a various combinations of pitch and helix angles. Pure water was used as working fluids for the experiments, Heat transfer coefficients and friction factors of the test tubes were evaluated from the values of measured temperatures, flow rates and pressure drops. An performance evaluation was performed to find an optimal combination of spirally indented tubes with wire coil inserts. When the helix angle of wire coil insert are $71^{\circ}-72^{\circ}$, the best heat transfer enhancement was shown. The friction factor was 9 - 13 times higher than those in smooth tubes, and the heat transfer was enhanced a maximum of 500%.

  • PDF

Heat Sink Design Optimization using Genetic Algorithm (Genetic Algorithm을 활용한 Heat Sink 최적 설계)

  • Kim, Won Gon
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.500-509
    • /
    • 2015
  • This paper presents the single objective design optimization of plate-fin heat sink equipped with fan cooling system using Genetic Algorithm. The proper heat sink and fan model are selected based on the previous studies. And the thermal resistance of heat sinks and fan efficiency during operation are calculated according to specific design parameters. The objective function is combination of thermal resistance and fan efficiency which have been taken to measure the performance of the heat sink. And Decision making procedure is suggested considering life time of semiconductor and Fan Operating cost. And also Analytical Model used for optimization is validated by Fluent, Ansys 13.0 and this model give a quite reasonable and reliable design.

  • PDF

Design method of heat storage type ground source heat pump system considering energy load pattern of greenhouse (원예시설의 에너지 부하패턴을 고려한 축열식 지열시스템 설계법에 관한 연구)

  • Yu, Min-Gyung;Nam, Yujin;Lee, Kwang Ho
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.57-63
    • /
    • 2015
  • Purpose: Ground source heat pump system has been attracted in the horticulture industry for the reduction of energy costs and the increasing of farm income. Even though it has higher initial costs, if it uses in combination with heat storage, it is able to reduce the initial costs and operate efficiently. In order to have significant effect of heat storage type ground source heat pump system, it is required to design the capacity considering various conditions such as energy load pattern and operating schedule. Method: In this study, we have designed heat storage type ground source heat pump system in 5 cases by the operating schedule, and examined the system to find the most economic and having superb performance regarding the system COP(Coefficient of Performance) and energy consumption, using dynamic energy simulation, TRNSYS 17. Result: Conventional ground source heat pump system has lower energy consumption than heat storage type, but following the result of LCC(Life Cycle Cost) analysis, the heat storage type was more economic due to the initial costs. In addition, it has the most efficient performance and energy costs in the case of the smallest heat storage time.

Development of Multi-point Heat Flux Measurement for Steel Quenching (강재 열처리용 다점 열유속 측정 기술 개발)

  • Lee, Jungho;Oh, Dong-Wook;Do, Kyu Hyung;Kim, Tae Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.4
    • /
    • pp.181-189
    • /
    • 2012
  • The demand on quantitative measurement of the heat flux is motivated in making higher-quality steel product through a water quenching process of plate mill. To improve a spatial degree of heat flux measurement, the multi-point heat flux measurement was carried out by a unique experimental technique that has a combination of the existing single-point heat flux gauge. The corresponding heat flux can be easily determined by Fourier's law in a conventional way. The multi-point heat flux gauge developed in this study can be applicable to measure the surface heat flux, the surface heat transfer coefficient during a water quenching applications of steelmaking process. The results exhibit different heat transfer regimes; such as single-phase forced convection, nucleate boiling, and film boiling, that are occurred in close proximity on the multi-point heat flux gauge quenched by water impinging jet.

Study of Characteristics of Self-Excitation in Lifted Laminar Free-Jet Propane Flames Diluted with Nitrogen (질소 희석된 프로판 자유제트 층류부상화염에 있어서 화염 자기진동 특성에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.399-408
    • /
    • 2010
  • The characteristics of lifted laminar propane flames diluted with nitrogen have been investigated experimentally to elucidate self-excitation and the effects of flame curvature. Flame oscillation modes are classified as follows: oscillation induced by heat loss, a combination of oscillations induced by heat loss and buoyancy, and a combination of the oscillations induced by heat loss and diffusive thermal instability. It is shown that the oscillation induced only by heat loss is not relevant to the diffusive thermal instability and hydrodynamic instability caused by buoyancy; this oscillation is observed under all lift-off flame conditions irrespective of the fuel Lewis number. These experimental evidences are displayed through the analysis of the power spectrum for the temporal variation of lift-off height. The possible mechanism of the oscillation induced by heat loss is also discussed.

Study on Epidemic Warm Diseases with dampness of "OnByeongJoByeon" ("온병조변(溫病條辨)" 습류온병(濕類溫病)에 대한 고찰)

  • Park, Mi Sun;Kim, Yeong Mok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.803-811
    • /
    • 2012
  • Oriental Medicine always attach great importance to the damp diseases. Dampness is related with many organs and many clinical diseases. The cause and the location of the damp disease, nature of the symptoms, combination with other pathogenic factors are very diverse. This article analyzed the concept, cause of disease, pathogenesis, characteristic of symptoms, treatment method and prescriptions of Epidemic Warm Diseases of dampness syndrome and cases of dampness-heat diseases based on the theories of Epidemic Warm Diseases and found that theories of Epidemic Warm Diseases have very wide area of application. Dampness is classified into cold-dampness and dampness-heat by combination of heat or cold. The dampness syndrome is related with organs such as lung, spleen, kidney, triple energizers and bladder, and affects liver and heart. The basic treatment methods are dispelling dampness turbidity and diffusing qi movement. The detail treatment methods are spreading lung qi with lightness and resolving dampness and excreting turbidity in upper energizer, opening and dipping down with pungent-bitter and diffusing qi movement and strengthening the spleen and stomach in the middle energizer, draining dampness with bland in the lower energizer. Warming Yang is the main method of treatment for cold-dampness and clearing heat is for dampness-heat with the assistant methods such as resolving dampness and promoting the flow of qi. 5. Acute fever, virus diseases, epidemic diseases among modern diseases are much related with the dampness-heat syndrome.

Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate (분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Park, Sang-Won;Han, Jun-Hiu;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.169-180
    • /
    • 2024
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.