• Title/Summary/Keyword: heat assisted magnetic recording

Search Result 12, Processing Time 0.024 seconds

Design and Fabrication of Micro Laser Module for Heat Assisted Magnetic Recording (차세대 열 보조 자지기록용 마이크로 레이저 모듈 설계 및 제작)

  • Lee, S.C.;Choi, Y.B.;Kim, Y.J.;Kim, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.68-69
    • /
    • 2009
  • Heat Assisted Magnetic Recording (HAMR) is one of the most promising candidates for high density magnetic storages over 1 Tb/$in^2$ areal density. Since the precise light delivery to the head is a key factor to realize HAMR application, it is required to establish the light delivery using micro laser module and micro actuator. For the careful control of micro actuator, a laser module was designed including laser diode, optical fiber, collimating lens, and fabricated V-groove substrate. In addition, the basic aligning method between the laser module and HAMR head was studied by the detection of current change in photo diode due to the amount of reflected light from the head.

  • PDF

Design and evaluation of laser module for light delivery in heat assisted magnetic recording (열 보조 자기기록용 광 전달 레이저 모듈의 설계 및 평가)

  • Choi, Yong-Bok;Lee, Moon-Ho;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • The micro laser module was designed and prepared to deliver the light to the HAMR head. It consists of laser diode, photo diode and actuator to realize stable light delivery even though the head is fluctuated during the disk rotation. The optical evaluation was carried out with the actual distance between the light source and HAMR head with a range of reflectivity and it was found that the incident angle could be controlled within ${\pm}0.125^{\circ}$ to maintain same intensity into the HAMR head. It was also confirmed that the designed micro laser module is thermally stable without any severe effect on the magnetic head.

Efficient Approach to Measure Crystallization Temperature in Amorphous Thin Film by Infrared Reflectivity

  • Wang, Wenxiu;Saito, Shin;Yakabe, Hidetaka;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.86-89
    • /
    • 2013
  • This paper shows a new effective approach to measure crystallization temperature of soft magnetic underlayer (SUL) for next generation of heat assisted perpendicular recording media. This approach uses temperature dependent reflectivity, which shows a clear jump when samples are crystallized. To achieve this measurement, an optical system is set up using hot plate and infrared laser. Reflectivity of SUL $(Co_{70}Fe_{30})_{92}Ta_3Zr_5$ shows a clear jump at its amorphous-crystalline transition temperature. Experiment results show this effect is clear in infrared region, and is weak for visible light.

Low Writing Field on Perpendicular Nano-ferromagnetic

  • Wibowo, Nur Aji;Rondonuwu, Ferdy S.;Purnama, Budi
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.237-240
    • /
    • 2014
  • For heat-assisted magnetic recording, magnetization reversal probabilities of nano-Pt/MnSb multilayer film with perpendicular magnetic anisotropy under thermal pulse activation were investigated numerically by solving the Landau-Lifshift Gilbert Equation. Magnetic parameters of nano-Pt/MnSb multilayer were used with anisotropy energy of $3{\times}10^5$ erg/cc and saturation magnetization of 2100 G, which offer more than 10 y data stability at room temperature. Scheme of driven magnetic field and thermal pulse on writing mechanism was designed closely to real experiment. This study found that the chosen material is potential to be used as a high density magnetic storage that requires low writing field less than two-hundreds Oersted through definite heating and cooling interval. The possibility of writing data with a zero driven magnetic field also became an important result. Further study is recommended on the thickness of media and thermal pulse design as the essential parameters of the reversal magnetization.

Technology Trend of Next Generation Information Storage Systems (차세대 정보저장시스템 최신 기술 동향)

  • Park Young-Pil;Rhim Yun-Chul;Yang Hyun-Seok;Kang Shinill;Park No-Cheol;Kim Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • There are two important trends in the modern information society, including digital networking and ubiquitous environment. Thus it is strongly required to develop new information storage devices such as high density storages to match the increased data capacity and small size storage devices to be applied to the mobile multimedia electronics. So far, many approaches have been studied for the high density memory, including the holographic memory, super-RENS and near-field recording using solid immersion lens (SIL) or nano-probe for the ODD (Optical Disk Drive) system, and the perpendicular magnetic recording and heat-assisted magnetic recording for the HDD (Hard Disk Drive) system. In addition, new mobile storage devices have been prepared using 0.85" HDD and 30mm ODD systems from a lot of foreign and domestic companies and institutes. In this paper, the recent technology trend for the next generation information storage system is summarized to offer a research motivation and encouragement to new researchers in this field with an emphasis on the technical issues of the increase of data capacity and decrease of device size.

  • PDF

Analysis of Dynamic Touch-down and Take-off of HAMR Head (열 보조 자기기록 시스템 헤드의 touch-down 과 take-off 해석)

  • Choi, Jong-Hak;Kim, Seok-Hwan;Kim, Ki-Hoon;Park, Young-Pil;Park, No-Cheol;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.61-66
    • /
    • 2012
  • In HDD industry, many technologies have been developed and investigated as means to increase the areal density of drives. Especially, heat assisted magnetic recording (HAMR) system has been considered as the next generation storage device. Most of the HAMR systems use near field optics as heating mechanism. Therefore, light delivery system is indispensable. We considered the light delivery system with laser diode (LD) mount and optical fiber. Mass and stiffness of the HAMR system using these LD mount and optical fiber are changed. The mass and stiffness of the HAMR system affects the slider dynamic behavior. It is necessary to analyze touch down (TD) and take off (TO). And, we performed the TD-TO experiment with HAMR suspension. Finally, we analyzed the result of TD-TO experiments. And we suggested the design of HAMR suspension to improve TD-TO performance.