• Title/Summary/Keyword: hazardous material

Search Result 327, Processing Time 0.031 seconds

A Study on the Hazardousness and the TLV in Working Environments of Benzine (벤진의 유해 위험성과 작업환경 노출기준 연구)

  • Kim, Hyeon-Yeong;Lee, Sung-Bae;Han, Jung-Hee;Shin, Jea-Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.233-244
    • /
    • 2006
  • Of many volatile organic detergents for metals, benzine(CAS No. 8030-30-6), of which the toxicity has not yet been proven, has been used as an alternative of the halide compounds in the consideration of toxic effects, global warming and the destruction of ozone layer. In order to evaluate the effects of the benzine on human body by investigating the subchronic inhalation toxicity, to obtain the basic data for establishing the criteria of exposure in working environments and to classify the hazardousness in compliance with the Industrial Safety and Health Act by evaluating the hazardousness, repeated inhalation exposure test was carried with SD rats. The rats were grouped by 10 females and males each. The repetitive inhalation exposures were carried out at 4 levels of concentration of 0 ppm, 60 ppm, 300 ppm, and 1,500 ppm, for 6 hours a day, 5 days a week, for 13 weeks. The results are described hereunder. 1. No death of the animals of the exposed and controlled groups in the test period. Not any specific clinical symptoms, change in feed intake quantity, abnormality in eye test, or change in activity were observed. 2. In the 300 ppm and 1,500 ppm groups, weight reduction in the female groups and weight increase of liver and kidney in the male groups compared with control group were observed with statistical significance(p<0.05). 3. In the blood test, the HCT increased in the male 300 ppm group and the number of hematocyte increased, MCV and MCH decreased in the male 1,500 ppm group. In the female 1,500 ppm group, the HB decreased and the distribution width of the hematocyte particle size increased. In the blood biochemistry test, the TP in the male 1,500 ppm group and the LDH in the female 1,500 ppm group were increased with statistical significance(p<0.05). 4. Under the test conditions of the present study with SD rats, the NOEL was evaluated to be from 60 ppm to 300 ppm for both male and female groups. By extrapolation, the NOEL for human who work 8 hours a day was evaluated to be from 128 ppm to 640 ppm 5. Since the NOEL evaluated in this study do not exceed 60ppm(0.184 mg/L) the test material does not belong to the classification of the hazardous substance "NOEL${\leq}$0.5mg/L/6hr/90day(rat), for continuous inhalation of 6hours a day for 90 days" nor to the basic hazardous chemical substance class 1(0.2 mg/L/6hr/90day(rat) defined by the GHS which is a criteria of classification and identification of chemical compounds. However, considering the boiling point($30-204^{\circ}C$), flashing point($-40^{\circ}C$), vapor pressure(40 mmHg), and the inflammable range(1.0 - 6.0 %), sufficient care should be taken for handling in the safety aspects including fire or explosion.

Engineering Performance and Applicability of Eco-Friendly Concrete for Artificial Reefs Using Electric Arc Furnace Slags (전기로 슬래그를 활용한 인공리프용 친환경콘크리트의 공학적 성능 및 적용성)

  • Jo, Young-Jin;Choi, Se-Hyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.533-544
    • /
    • 2015
  • Unlike the concrete structure built on land, that exposed to the marine environment is greatly degraded in durability due to the exposure to not only the physical action caused by sea wind, tide, and wave, but also the harsh conditions, including the chemical erosion and freeze-thaw which result from $SO_4{^{2-}}$, $Cl^-$ and $Mg^{2+}$ ions in seawater. In the process of the large scaled construction of submerged concrete structures, of course environmental hazardous substance, such as alkaline (pH) and heavy metals, may be leached. Thus, this issue needs to be adequately reviewed and studied. Therefore, this study attempted to develop a CSA (Calcium Sulfo Aluminate) activator using electric arc furnace reducing slags, as well as the eco-friendly concrete for artificial reefs using electric arc furnace oxidizing slag as aggregate for concrete. The strength properties of the eco-friendly concrete exposed to the marine environment were lower than those of the normal concrete by curing 28 days. This suggest that additional studies are needed to improve the early strength of the eco-friendly concrete. With respect to seawater resistance of the eco-friendly concrete, the average strength loss against 1 year of curing days reached 8-9%. the eco-friendly concrete using high volume of ground granulated blast furnace slags and high specific gravity of electronic arc furnace oxidizing slag demonstrated the sufficient usability as a freeze-thaw resistant material. With respect to heavy metal leaching properties of the eco-friendly concrete, heavy metal substances were immobilized by chemical bonding in the curing process through the hydration of concrete. Thus, heavy metal substances were neither identified at or below environmental hazard criteria nor detected, suggesting that the eco-friendly concrete is safe in terms of leaching of hazardous substances.

A Thermal Study of the Harmful Chemical Species of Charcoal and Their Transformation during Combustion (숯의 유해물질과 이들의 연소 중 상변화에 대한 열분석 연구)

  • Yoon, Hye-On;Kim, Ki-Hyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Charcoal burning in the process of manufacture and ordinary use often release many constituent chemical species. As a result of open burning, the chemical composition as well as the physical properties of original material changes through the modification of surface properties of charcoal. Surface modification could be more responsible toward the outside elements for surface adsorption, it becomes easy to adsorb more toxic elements through surface adsorption. In this study, four kinds of commercially available charcoal were studied against the chemical and thermal stability along with the heavy metals and organic hazardous substances. Thermo gravimetric analysis (TGA) and differential scanning calorimetry, from room temperature to $400^{\circ}C$, were performed to study the weight loss and the changes in the behavior of those substances. According to TGA analysis, about 10% of weight loss was happened before $200^{\circ}C$. It was found that related weight loss of this temperature region may responsible to the gas phase organic matter. Natural charcoal, K1 and C1 show 15% of loss during the reaction heated to $400^{\circ}C$, while the artificial charcoal K2, C2 show the weight loss of about 20% was found. This is consistent with the main organic matter and VOC analysis results shown. Chemical composition based on the x-ray diffraction analysis was carried out. X-ray diffraction analysis reveals the existence of chemical additive in the forms of $Ba(NO_3)_2$, $BaCO_3$, and $NaNO_3$.

Principle and Application of Composting for Soils Contaminated with Hazardous Organic Pollutants (오염토양 정화를 위한 콤포스팅 기술의 원리와 적용에 관한 고찰)

  • Park, Joon-Seok;Lee, Noh-Sup;In, Byung-Hoon;Namkoong, Wan;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2001
  • Composting is a cost-effective and environmentally-sound technology to treat soils contaminated with hazardous organic pollutants. Pollutants to be treated are as follows: explosives, phenolic compounds, PAHs, petroleum hydrocarbons, pesticides, and etc. Composting systems are windrow, static pile, and in-vessel. Design and operational parameters of composting are aeration modes, temperature, moisture content, nutrient supplement, amendment added, and etc. Appropriate oxygen concentration of composting for contaminated soils are 5~15%, while some compounds are degraded well at the low $O_2$ concentration of 2~5%. The most diverse microorganisms live in the temperature of $25{\sim}40^{\circ}$. 50~90% of the soil field capacity is the moisture content not to make a problem in composting. Assuming a bacterial chemical equation is $C_{60}H_{87}O_{23}N_{12}P$, theoretical C : N : P from bacterial chemical portion is approximately 20 : 5 : 1. It should be noted that the ratio does not apply to the total organic carbon measured in a waste because not all carbon metabolized by bacteria is synthesized to new cellular material. Initial C/N ratio of 25~40 is optimum. It is more economical to recycle soils or composts than to add commercial microbes.

  • PDF

Development and Assessment of Harmful Gases Reducing Molded Fuel Using Torrefied Wood (반탄화목재를 이용한 유해가스 저감형 성형연료의 개발 및 평가)

  • LEE, Chang-Goo;EOM, Chang-Deuk;KIM, Min-Ji;KANG, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.732-744
    • /
    • 2020
  • In this study, a torrefaction of Quercus serrata to manufacture a molded charcoal was performed, investigated material properties, fuel characteristics, and performed a quantitative analysis of hazardous gases which occur during a combustion process. In addition, a molded charcoal in market was selected as a control group, and a comparative analysis was performed. As a result, the higher heating value (HHV) of the torrefied specimen was about 14% higher than that of molded charcoal, and its ash content was about 51 times lower. Moreover, after performing a quantitative assessment of hazardous gases (carbon monoxide, nitrogen oxide, and sulfur dioxide) which were produced when each specimen was combusted for 900 seconds in an enclosed chamber, it was confirmed that the maximum value of generated amount of carbon monoxide on the torrefied specimen was about 50 times lower than that of the existing molded charcoal. Therefore, it was shown that the torrefied specimen produced in this study had a higher heating value than the molded charcoal in the market, and a very low amount of carbon monoxide generated during the combustion process.

Status of Employment-Related Qualifications Similar to a Medical Laboratory Technology Major (임상병리기술학 전공 유사 취업연계 자격 현황)

  • Sung, Hyun Ho;Kim, Dae Sik;Cho, Young Kuk;Yoon, Ki Nam
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.525-534
    • /
    • 2018
  • This study evaluated the various qualifications that can be linked to employment similar to the medical laboratory technology major. The qualifications for employment outside the medical laboratory technology major are industrial health instructor, doping control officer, audiologist, sign language interpreter, health education specialist, claim adjuster, Korea life underwriter, administrative manager, hospital administrator, insurance review manager, and hospital coordinator. The qualifications for employment similar to the medical laboratory technology major include the clinical research coordinator, clinical research associate, anatomist, analytical chemistry analysts, hazardous materials industry engineers, biotechnologist, biosafety managers, biotechnology technicians, medical device quality officers, animal care nurse, industrial engineer hazardous material, bioprocess engineer, biosafety officer, certified technology consultant, director of medical device quality control, laboratory animal technician, animal nursing technician, and cruise medical manager. Therefore, it is necessary to conduct a social analysis survey of the various qualifications currently held by medical technologists. In addition, it will be necessary to investigate the current status of medical technologists working in other fields. In the future, medical technologists should expand the scope of their work through efforts to strengthen their individual work capacity, share cases, and strengthen their expertise.

Proficiency testing of cadmium and lead in polypropylene resin (폴리프로필렌 수지 중 카드뮴과 납 측정 숙련도시험)

  • Cho, K.H.;Lim, M.C.;Min, H.S.;Han, M.S.;Song, H.J.;Park, C.J.
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.183-192
    • /
    • 2007
  • The various environmental regulation directives such as RoHS (restriction of hazardous substances in electrical and electronic products) and WEEE (waste from electrical and electronic equipments) are practically used as the technical barrier in international trade (TBT) of vehicles and electrical and electronic products recently. Regarding such an environmental regulation, Korea Research Institute of Standards Science (KRISS) organized a proficiency testing scheme to establish the reliability of measurement results produced by the relevant research institutes and test laboratories in Korea. Participants were 31 laboratories related to production of the electrical and electronic equipments and mobile vehicles. Two polypropylene samples of pellet type were employed as the proficiency testing materials (PTMs). Cadmium and lead were the analytes chosen among six components regulated in European Union (EU) RoHS directive. The PTMs were sent to the participants by post on September $1^{st}$ 2006, and deadline for results submission were October $10^{th}$ 2006. The results of each laboratory were evaluated in comparison with KRISS reference values using Robustic Z-score and Youden plot methods. The results of the various sample digestion methods were also compared. Most of participants reported good agreement within 10 % range of reference values. However, results from several laboratories showed significant biases from reference values. These laboratories should establish the quality assurance system for improvement of the measurement reliability.

Determination of halogen elements in plastics by using combustion ion chromatography (연소IC를 이용한 플라스틱 중 할로겐 물질 정량)

  • Jung, Jae Hak;Kim, Hyo Kyoung;Lee, Yang Hyoung;Lee, Lim Soo;Shin, Jong Keun;Lee, Sang Hak
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.284-295
    • /
    • 2008
  • For plastics samples, a method using combustion ion chromatography was selected as a method for rapid low-cost analysis to test whether hazardous substances are contained or not. Using combustion ion chromatography, a verification test for F, Cl and Br compounds generated a linear calibration curve with a correlation coefficient of $r^2$ = 0.999~1.000 in the calibration range from 0.5 to 4.0 mg/kg. The detection limits were found to be 0.005~0.024 mg/kg and quantitative limits were found to be 0.014~0.073 mg/kg. The recoveries of combustion ion chromatography using certified reference material (CRM) were found to be 95.5~104.9%. Based on these results, a proficiency test was conducted together with several laboratories in and out of the country, to make comparative analysis of the results from each laboratory. As a result, the data supported the use of combustion ion chromatography as an effective analysis method to deal with regulations for halogen-free electronic products and for other hazardous substances in the electronic products.

Microbiological Hazard Analysis for HACCP System Application to Vinegared Pickle Radishes (식초절임 무의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Kwon, Sang-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.69-74
    • /
    • 2013
  • This study has been performed for 150 days from February 1 - June 31, 2012 aiming at analyzing biologically hazardous factors in order to develop HACCP system for the vinegared pickle radishes. A process chart was prepared as shown on Fig. 1 by referring to manufacturing process of manufacturer of general vinegared pickle radishes regarding process of raw agricultural products of vinegared pickle radishes, used water, warehousing of additives and packing material, storage, careful selection, washing, peeling off, cutting, sorting out, stuffing (filling), internal packing, metal detection, external packing, storage and consignment (delivery). As a result of measuring Coliform group, Staphylococcus aureus, Salmonella spp., Bacillus cereus, Listeria Monocytogenes, E. coli O157:H7, Clostridium perfringens, Yeast and Mold before and after washing raw radishes, Bacillus cereus was $5.00{\times}10$ CFU/g before washing but it was not detected after washing and Yeast and Mold was $3.80{\times}10^2$ CFU/g before washing but it was reduced to 10 CFU/g after washing and other pathogenic bacteria was not detected. As a result of testing microorganism variation depending on pH (2-5) of seasoning fluid (condiment), pH 3-4 was determined as pH of seasoning fluid as all the bacteria was not detected in pH3-4. As a result of testing air-borne bacteria (number of general bacteria, colon bacillus, fungus) depending on each workplace, number of microorganism of internal packing room, seasoning fluid processing room, washing room and storage room was detected to be 10 CFU/Plate, 2 CFU/Plate, 60 CFU/Plate and 20 CFU/Plate, respectively. As a result of testing palm condition of workers, as number of general bacteria and colon bacillus was represented to be high as 346 $CFU/Cm^2$ and 23 $CFU/Cm^2$, respectively, an education and training for individual sanitation control was considered to be required. As a result of inspecting surface pollution level of manufacturing facility and devices, colon bacillus was not detected in all the specimen but general bacteria was most dominantly detected in PP Packing machine and Siuping machine (PE Bulk) as $4.2{\times}10^3CFU/Cm^2$, $2.6{\times}10^3CFU/Cm^2$, respectively. As a result of analyzing above hazardous factors, processing process of seasoning fluid where pathogenic bacteria may be prevented, reduced or removed is required to be controlled by CCP-B (Biological) and threshold level (critical control point) was set at pH 3-4. Therefore, it is considered that thorough HACCP control plan including control criteria (point) of seasoning fluid processing process, countermeasures in case of its deviation, its verification method, education/training and record control would be required.

Microbiological Hazard Analysis for HACCP System Application to Non Heat-Frozen Carrot Juice (비가열냉동 당근주스의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Lee, Ung-Soo;Kwon, Sang-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • This study has been performed for about 270 days at analyzing biologically hazardous factors in order to develop HACCP system for the non heat-frozen carrot juice. A process chart was prepared by manufacturing process of raw agricultural products of non heat-frozen carrot juice, which was contained water and packing material, storage, washing, cutting, extraction of the juice, internal packing, metal detection, external packing, storage and consignment (delivery). As a result of measuring Coliform group, Staphylococcus aureus, Salmonella spp., Bacillus cereus, Listeria Monocytogenes, Enterohemorrhagic E. coli before and after washing raw carrot, Standard plate count was $4.7{\times}10^4CFU/g$ before washing but it was $1.2{\times}10^2CFU/g$ detected after washing. As a result of testing airborne bacteria (Standard plate count, Coliform group, Yeast and Fungal) depending on each workplace, number of microorganism of in packaging room, shower room and juice extraction room was detected to be 10 CFU/Plate, 60 CFU/Plate, 20 CFU/Plate, respectively. As a result of testing palm condition of workers, as number of Standard plate count, Coliform group and Staphylococcus aureus was represented to be high as $6{\times}10^4CFU/cm^2$, $0CFU/cm^2$ and $0CFU/cm^2$, respectively, an education and training for individual sanitation control was considered to be required. As a result of inspecting surface pollution level of manufacturing facility and devices, Coliform group was not detected in all the specimen but Standard plate count was most dominantly detected in scouring kier, scouring kier tray, cooling tank, grinding extractor, storage tank and packaging machine-nozzle as $8.00{\times}10CFU/cm^2$, $3.0{\times}10CFU/cm^2$, $4.3{\times}10^2CFU/cm^2$, $7.5{\times}10^2CFU/cm^2$, $6.0{\times}10CFU/cm^2$, $8.5{\times}10^2CFU/cm^2$ respectively. As a result of analyzing above hazardous factors, processing process of ultraviolet ray sterilizing where pathogenic bacteria may be prevented, reduced or removed is required to be controlled by CCP-B (Biological) and critical level (critical control point) was set at flow speed is 4L/min. Therefore, it is considered that thorough HACCP control plan including control criteria (point) of seasoning fluid processing process, countermeasures in case of its deviation, its verification method, education/training and record control would be required.