• Title/Summary/Keyword: hazard information system

Search Result 443, Processing Time 0.027 seconds

RISK ASSESSMENT USING BIM BASED SAFETY MANAGEMENT SYSTEM

  • Hongseob Ahn;Hyunjoo Kim;Wooyoung Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.107-110
    • /
    • 2011
  • The key role in safety management is to identify any possible hazard before it occurs by identifying any possible risk factors which are critical to risk assessment. This planning/assessment process is considered to be tedious and requires a lot of attention due to the following reasons: firstly, falsework (temporary structures) in construction projects is fundamentally important. However, the installation and dismantling of those facilities are one of the high risk activities in the job sites. Secondly, temporary facilities are generally not clearly delineated on the building drawings. It is our strong belief that safety tools have to be simple and convenient enough for the jobsite people to manage them easily and be flexible for any occasions to be occurred at various degrees. In order to develop the safety assessment system, this research utilizes the BIM technology and collects important information by importing data from BIM models and use it in the planning stage.

  • PDF

Development of Spatial Information System for Regional Ground Stability Assessment near Dam area (댐 주변지역 광역적 지반 안정성 평가를 위한 공간 정보시스템 개발)

  • 장범수;이사호;최위찬;최재원;오영철
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.125-135
    • /
    • 2001
  • Ground failure such as landslide, rock fall land subsidence by heavy rainfall have damaged to people and property. Especially, the damage to important facility such as dam, bridge, tunnel and industrial complex may be possible. Therefore the ground failure must be assessed and counter plan must be prepared. So, the object of this study is to develop the spatial information system for regional ground stability assessment. For this, the topographic, geologic, soil, forest, land use, rainfall frequency map, and satellite image near 40 dams were collected and constructed to the spatial information system. The spatial information system was developed using Avenue in ArcView 3.2 environment and consists of pull down menus and icons. For application of the spatial information system, regional ground stability was assessed in Andong dam. The assessment was ground failure susceptibility and possibility. The spatial information can be used for regional ground stability assessment, prevention and mitigation of hazard, and management of ground as basic data.

  • PDF

Integrated Command System for Firefight Satety in Special Disaster Area (특수재난현장 진압대원의 안전을 위한 통합 지휘시스템에 관한 연구)

  • Roh, Tae-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.98-108
    • /
    • 2015
  • An integrated command system is critical for the safety of firefighters and effective work in the headquarters of a special disaster areas such as natural disaster or large man-made hazard. The integrated command system requires environmental information such as temperature, humidity, and $CO_2$ levels, as well as personal physical information such as pulse and air respirator levels. An Analog to Digital Converter (ADC) chip converts sensed information into digital signals, and a Micro Controller Unit (MCU) transmits the digital signals to a transmission board using serial communication through a Serial Peripheral Interface (SPI). The digital signals are saved in a transmission board and transmitted to the integrated command system by a Radio Frequency (RF) unit. The location of fire-fighters in a building are determined using a gyro sensor and an inertial sensor. The collected information is applied to the integrated command system for firefighter safety and to ensure that they can effectively carry out their duties. Tthis study theoretically and experimentally investigated the technologies of RF transmission, indoor position, and an integrated command system that supports decision making using the transmitted information.

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses (지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교)

  • Kang, Byeong-Ju;Hwang, Bum-Sik;Bang, Tea-Wan;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.

The Study for the Optimal Location of Fire Stations in Seoul (서울시의 소방서 최적입지에 관한 연구)

  • Kim, Geun-Young;Kang, Sung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.1 s.4
    • /
    • pp.153-159
    • /
    • 2002
  • Disasters are the phenomena that we have to prevent the occurrence in order to keep the safety to human lives and properties, and if occurred, we have to minimize the economic, social, and mental costs of the occurred disasters or incidents. This research analyzes the optimal location of fire stations in terms of served population maximization in Seoul. This research introduces "the maximal covering location problem(MCLP)," one of the optimization techniques, as the primary research method. This research also applies a geographic information system into spatial distribution analyses of existing fire stations and observed fire incidents. Results from the analyses show that the existing location of fire stations and branches need to be improved. The dispatch location of fire engines should be reconsidered for rapid services of fire fighting.

Hazardous Area Identification Model using Automated Data Collection(ADC) based on BIM (BIM기반 자동화 데이터 수집기술을 활용한 위험지역 식별 모델)

  • Kim, Hyun-Soo;Lee, Hyun-Soo;Park, Moon-Seo;Lee, Kwang-Pyo;Pyeon, Jae-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.6
    • /
    • pp.14-23
    • /
    • 2010
  • A considerable number of construction disasters occurs on pathway. A safety management in construction sites is usually performed to prevent accidents in activity areas. This means that safety management level of hazards on pathway is relatively minified. Many researchers have introduced that a hazard identification is fundamental of safety management. Thus, algorithms for helping safety managers' hazardous area identification is developed using automated data collection technology. These algorithms primarily search potential hazardous area by comparing workers' location logs based on real-time locating system and optimal routes based on BIM. And potential hazardous areas is filtered by identified hazardous areas and activity areas. After that, safety managers are provided with information about potential hazardous areas and can establish proper safety countermeasures. This can help improving safety in construction sites.

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Impact of Off-Hour Hospital Presentation on Mortality in Different Subtypes of Acute Stroke in Korea : National Emergency Department Information System Data

  • Kim, Taikwan;Jwa, Cheolsu
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • Objective : Several studies have reported inconsistent findings among countries on whether off-hour hospital presentation is associated with worse outcome in patients with acute stroke. However, its association is yet not clear and has not been thoroughly studied in Korea. We assessed nationwide administrative data to verify off-hour effect in different subtypes of acute stroke in Korea. Methods : We respectively analyzed the nationwide administrative data of National Emergency Department Information System in Korea; 7144 of ischemic stroke (IS), 2424 of intracerebral hemorrhage (ICH), and 1482 of subarachnoid hemorrhage (SAH), respectively. "Off-hour hospital presentation" was defined as weekends, holidays, and any times except 8:00 AM to 6:00 PM on weekdays. The primary outcome measure was in-hospital mortality in different subtypes of acute stroke. We adjusted for covariates to influence the primary outcome using binary logistic regression model and Cox's proportional hazard model. Results : In subjects with IS, off-hour hospital presentation was associated with unfavorable outcome (24.6% off hours vs. 20.9% working hours, p<0.001) and in-hospital mortality (5.3% off hours vs. 3.9% working hours, p=0.004), even after adjustment for compounding variables (hazard ratio [HR], 1.244; 95% confidence interval [CI], 1.106-1.400; HR, 1.402; 95% CI, 1.124-1.747, respectively). Off-hours had significantly more elderly ≥65 years (35.4% off hours vs. 32.1% working hours, p=0.029) and significantly more frequent intensive care unit admission (32.5% off hours vs. 29.9% working hours, p=0.017) than working hours. However, off-hour hospital presentation was not related to poor short-term outcome in subjects with ICH and SAH. Conclusion : This study indicates that off-hour hospital presentation may lead to poor short-term morbidity and mortality in patients with IS, but not in patients with ICH and SAH in Korea. Excessive death seems to be ascribed to old age or the higher severity of medical conditions apart from that of stroke during off hours.

Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS) (수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석)

  • Jung, Yong;Choi, Minha
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF

The Study of Regional Economic Effect by Construction of 119 Integrated Information System through RAS Method -In the Case Gyangsngnamdo- (RAS Method을 통해 본 119소방종합정보시스템 구축 사업의 지역 경제 파급효과 분석에 관한 연구 -경상남도를 중심으로-)

  • Ryu, Tae-Chang;Kim, Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.41-49
    • /
    • 2007
  • This study aims to examine the ripple effect of the '119 Integrated Information System' for city disaster management on the local economy. The study was conducted in the area of Gyeongnam province, and the study method is the interdependence analysis based on the Input Coefficient drawn from Input-Output Tables in which Intermediary Transaction Tables drawn through RAS was taken advantage of to grasp the correlation among industries and regions in terms of the local economy, and the ripple effect of the changes of political exogenous variables on the local economy was divided to such elements as production, added value, and employment so as to attempt empirical analysis on the local economy system. To estimate the ripple effect on the local economy, three different amounts of the expected input were applied to the study respectively and the results are as follows: Some $28.7{\sim}42.4$ billion won for the production induction effect, some $7.5{\sim}11.4$ billion won for the added-value induction effect, some $103{\sim}157$ job openings for the employment induction effect, and some $3.8{\sim}5.7$ billion won for the income induction effect are expected to take place as the ripple effect on the local economy.