• Title/Summary/Keyword: hash generation

Search Result 83, Processing Time 0.019 seconds

Biometric Information and OTP based on Authentication Mechanism using Blockchain (블록체인을 이용한 생체정보와 OTP 기반의 안전한 인증 기법)

  • Mun, Hyung-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.3
    • /
    • pp.85-90
    • /
    • 2018
  • Blockchain technology provides distributed trust structure; with this, we can implement a system that cannot be forged and make Smart Contract possible. With blockchain technology emerging as next generation security technology, there have been studies on authentication and security services that ensure integrity. Although Internet-based services have been going with user authentication with password, the information can be stolen through a client and a network and the server is exposed to hacking. For the reason, we suggest blockchain technology and OTP based authentication mechanism to ensure integrity. In particular, the Two-Factor Authentication is able to ensure secure authentication by combining OTP authentication and biometric authentication without using password. As the suggested authentication applies multiple hash functions and generates transactions to be placed in blocks in order for biometric information not to be identified, it is protected from server attacks by being separate from the server.

Group Key Assignment Scheme based on Secret Sharing Scheme for Dynamic Swarm Unmanned Systems (동적 군집 무인체계를 위한 비밀분산법 기반의 그룹키 할당 기법)

  • Jongkwan Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.93-100
    • /
    • 2023
  • This paper presents a novel approach for assigning group keys within a dynamic swarm unmanned system environment. In this environment, multiple groups of unmanned systems have the flexibility to merge into a single group or a single unmanned system group can be subdivided into multiple groups. The proposed protocol encompasses two key steps: group key generation and sharing. The responsibility of generating the group key rests solely with the leader node of the group. The group's leader node employs a secret sharing scheme to fragment the group key into multiple fragments, which are subsequently transmitted. Nodes that receive these fragments reconstruct a fresh group key by combining their self-generated secret fragment with the fragment obtained from the leader node. Subsequently, they validate the integrity of the derived group key by employing the hash function. The efficacy of the proposed technique is ascertained through an exhaustive assessment of its security and communication efficiency. This analysis affirms its potential for robust application in forthcoming swarm unmanned system operations scenarios characterized by frequent network group modifications.

An efficient Broadcast Authentication Scheme for Wireless Sensor Networks (무선 센서 네트워크에서의 효율적 Broadcast Authentication 방안)

  • Moon Hyung-Seok;Lee Sung-Chang
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.6 s.348
    • /
    • pp.23-29
    • /
    • 2006
  • It is difficult to apply conventional security algorithms to the wireless sensor networks composed of nodes that have resource constraints such as memory, computing, power resources limitation. Generally, shared key based algorithms with low resource consumption and short key length are used for broadcast packets in authentication of base station. But it is not suitable that all the nodes hold the same shared key only for packet authentication. Recently, broadcast authentication algorithm for sensor network is proposed, which uses key chain generation by one-way hash function, Message Authentication Code generation by each keys of the key chains and delayed key disclosure. It provides suitable authentication method for wireless sensor networks but may leads to inefficient consequence with respect to network conditions such as broadcast ratio, key chain level, and so on. In this paper, we propose an improved broadcast authentication algorithm that uses key chain link and periodical key disclosure. We evaluated the performance of proposed algorithm using TOSSIM(TinyOS Simulator) in TinyOS. The results show that the proposed algorithm ensures low authentication delay, uses memory and computing resource of receiving nodes efficiently and reduces the amount of packet transmitting/receiving.