• Title/Summary/Keyword: harvesting delay

Search Result 55, Processing Time 0.022 seconds

DYNAMICS OF A RATIO-DEPENDENT PREY-PREDATOR SYSTEM WITH SELECTIVE HARVESTING OF PREDATOR SPECIES

  • Kar Tapan Kumar
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.385-395
    • /
    • 2007
  • The dynamics of a prey-predator system, where predator population has two stages, juvenile and adult with harvesting are modelled by a system of delay differential equation. Our analysis shows that, both the delay and harvesting effort may play a significant role on the stability of the system. Numerical simulations are given to illustrate the results.

Stability and Optimal Harvesting in Lotka-Volterra Competition Model for Two-species with Stage Structure

  • Al-Omari, J.F.M.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.31-56
    • /
    • 2007
  • In this paper, we consider a delay differential equation model of two competing species with harvesting of the mature and immature members of each species. The time delay in the model represents the time from birth to maturity of that species, which appears in the adults recruitment terms. We study the dynamics of our model analytically and we present results on positivity and boundedness of the solution, conditions for the existence and globally asymptotically stable of equilibria, a threshold of harvesting, and the optimal harvesting of the mature populations of each species.

  • PDF

Design of MAC Protocol for Improving Energy Efficiency and Reducing Transmission Delay in EH-WSN (EH-WSN에서 에너지 효율 향상 및 전송지연 축소를 위한 MAC 프로토콜 설계)

  • Park, Seok Woo;Ra, In-Ho
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Recent research on energy harvesting wireless sensor networks focuses on the development of techniques to solve the limited energy resource problem and to extend the whole network life efficiently. Energy harvesting technology can increase the lifetime of a network, but data transmission becomes unavailable when it harvests energy from radio frequency, resulting longer network delay with respect to the increased time in energy harvesting. Therefore, building energy harvesting wireless sensor network should consider the possible network delay as well as the network lifetime problem. In this paper, we propose a new MAC protocol that minimizes end-to-end network delay by adjusting the data transmission time for a packet based on estimating the energy for data transmission along with the amount of traffic flowing into the network and harvested energy. For this goal, it engineers an energy management mechanism that adjusts the sleep time of the network by measuring energy harvesting time. In addition, with simulation results it shows that the proposed MAC protocol improves the performance in terms of energy consumption and end-to-end delay, compared to the existing MAC protocols.

Energy-Efficient Routing Protocol based on Interference Awareness for Transmission of Delay-Sensitive Data in Multi-Hop RF Energy Harvesting Networks (다중 홉 RF 에너지 하베스팅 네트워크에서 지연에 민감한 데이터 전송을 위한 간섭 인지 기반 에너지 효율적인 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.611-625
    • /
    • 2018
  • With innovative advances in wireless communication technology, many researches for extending network lifetime in maximum by using energy harvesting have been actively performed on the area of network resource optimization, QoS-guaranteed transmission, energy-intelligent routing and etc. As known well, it is very hard to guarantee end-to-end network delay due to uncertainty of the amount of harvested energy in multi-hop RF(radio frequency) energy harvesting wireless networks. To minimize end-to-end delay in multi-hop RF energy harvesting networks, this paper proposes an energy efficient routing metric based on interference aware and protocol which takes account of various delays caused by co-channel interference, energy harvesting time and queuing in a relay node. The proposed method maximizes end-to-end throughput by performing avoidance of packet congestion causing load unbalance, reduction of waiting time due to exhaustion of energy and restraint of delay time from co-channel interference. Finally simulation results using ns-3 simulator show that the proposed method outperforms existing methods in respect of throughput, end-to-end delay and energy consumption.

PERMANENCE OF A TWO SPECIES DELAYED COMPETITIVE MODEL WITH STAGE STRUCTURE AND HARVESTING

  • XU, CHANGJIN;ZU, YUSEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1069-1076
    • /
    • 2015
  • In this paper, a two species competitive model with stage structure and harvesting is investigated. By using the differential inequality theory, some new sufficient conditions which ensure the permanence of the system are established. Our result supplements the main results of Song and Chen [Global asymptotic stability of a two species competitive system with stage structure and harvesting, Commun. Nonlinear Sci. Numer. Simul. 19 (2001), 81-87].

Design of an Energy Harvesting Full-Wave Rectifier Using High-Performance Comparator (고성능 비교기를 이용한 에너지 하베스팅 전파정류회로 설계)

  • Lee, Dong-Jun;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.429-432
    • /
    • 2017
  • In this paper, a full - wave rectifying harvesting circuit with a high-performance comparator is designed. Designed circuits are divided into Negative Voltage Converter and Active Diode stages. The comparator included in the active diode stage is implemented as a 3-stage type and divided into pre-amplification, decision circuit, and output buffer stages. The main purpose of this comparator is to reduce the propagation delay and improve the voltage and power efficiency of the harvesting circuit. The proposed circuit is designed with magna $0.35{\mu}m$ CMOS process and its operation is verified by simulation. The chip area of the designed energy harvesting circuit is $900{\mu}m{\times}712{\mu}m$.

  • PDF

Optimal Harvest-Use-Store Design for Delay-Constrained Energy Harvesting Wireless Communications

  • Yuan, Fangchao;Jin, Shi;Wong, Kai-Kit;Zhang, Q.T.;Zhu, Hongbo
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.902-912
    • /
    • 2016
  • Recent advances in energy harvesting (EH) technology have motivated the adoption of rechargeable mobile devices for communications. In this paper, we consider a point-to-point (P2P) wireless communication system in which an EH transmitter with a non-ideal rechargeable battery is required to send a given fixed number of bits to the receiver before they expire according to a preset delay constraint. Due to the possible energy loss in the storage process, the harvest-use-and-store (HUS) architecture is adopted. We characterize the properties of the optimal solutions, for additive white Gaussian channels (AWGNs) and then block-fading channels, that maximize the energy efficiency (i.e., battery residual) subject to a given rate requirement. Interestingly, it is shown that the optimal solution has a water-filling interpretation with double thresholds and that both thresholds are monotonic. Based on this, we investigate the optimal double-threshold based allocation policy and devise an algorithm to achieve the solution. Numerical results are provided to validate the theoretical analysis and to compare the optimal solutions with existing schemes.

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks (ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.

조.만생 사초용 호밀의 파종 및 수확시기에 관한 연구 II. 파종 및 수확시기별 수량 및 사료가치 ( Studies on the Seeding and Harvesting Dates of Early and Late Maturing Varieties of Forage Rye II. Yield and nutritive value influenced by seeding and harvesting

  • 권찬호;김동암
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.4
    • /
    • pp.316-323
    • /
    • 1994
  • In order to reduce the problems from the presence of rye crop residues in maize establishment and yield, and also to improve the growth, productivity and nutritive value of rye(Seca1e cereal L.). an experiment was canied out to determine the variety effect of rye on the forage production system and the eft'ect of seeding and harvesting dates on the production and quality of rye. 'This experiment was conducted at the forage testing field of S.N.U., Suweon, from September 1986 to May 1989. Heading date of an early maturing rye variety, Wintermore. was earlier 10 days than that of a late maturing rye variety, Kodiak. A 15-days delay in the seeding dates of early and late maturing varieties of rye tended to delay the heading dates of the rye varieties for 3 and 4 days, respectively. Dry matter and in vitro digestible dry matter yields were markedly increased with earlier seeding date. Before 20 April, the DM and IVDDM yeilds of an early maturing rye variety, Winterrnore. were higher than those of a late maturing rye variety, Kodiak. However, no such a trend was found between the early and late maturing varieties of rye after 27 April. Less than 35% of ADF was recorded until the harvesting dates of 13 and 27 p r i l for early and late maturing rye varieties, respectively, but less than 46% of NDF was maintained until the harvesting drtte of 13 April for botg varieties. Based on the results obtained from this experiment. it may be concluded that the most desirable forage production from corn-rye double cropping system is to advance the seeding time of rye toward the first 10 days of September as well as harvesting time toward the first heading stage with an early maturing rye variety.

  • PDF

A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜)

  • Shim, Kyuwook;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.