• 제목/요약/키워드: harmonic polynomial approximation

검색결과 5건 처리시간 0.018초

BOUNDARY COLLOCATION FAST POISSON SOLVER ON IRREGULAR DOMAINS

  • Lee, Dae-Shik
    • Journal of applied mathematics & informatics
    • /
    • 제8권1호
    • /
    • pp.27-44
    • /
    • 2001
  • A fast Poisson solver on irregular domains, based on bound-ary methods, is presented. The harmonic polynomial approximation of the solution of the associated homogeneous problem provides a good practical boundary method which allows a trivial parallel processing for solution evaluation or straightfoward computations of the interface values for domain decomposition/embedding. AMS Mathematics Subject Classification : 65N35, 65N55, 65Y05.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.1-14
    • /
    • 2004
  • Numerical solution to linear bending analysis of circular plates is obtained by the method of harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the weighting coefficients required by differential quadrature approximation without restricting the choice of mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and vertical deflections are found for two different types of load. In the present study, the axisymmetric bending behavior is considered. Both the clamped and the simply supported edges are considered as boundary conditions. The obtained results are compared with existing solutions available from analytical and other numerical results such as finite elements and finite differences methods. A comparison between the HDQ results and the finite difference solutions for one example plate problem is also made. The method presented gives accurate results and is computationally efficient.

Multi-Electrode Array를 이용한 뇌 해마의 Total Activity 추산 (Total Activity Estimation of Hippocampal Slice Using Multi-Electrode Array)

  • 이정찬;김지은;조정연;손민숙;박경모;박지호
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.409-417
    • /
    • 2006
  • Research on neural circuit is a difficult area due to complexity and inaccessibility. Due to recent developments, the research using multi-electrode array of cells or tissues has become an important research area. However, there are some difficulties to decode the submerged meaning from huge and complex neural data. Moreover, it needs a harmonic collaboration between informatics and bioscience. In this paper, we have developed a custom-designed signal processing technique for multi-electrode array measured neural responses induced by electrical stimuli to the hippocampal tissue slices of the rat brain. The raw data from hippocampal slice using the multi-electrode array system were saved in a computer. Then we estimated characteristic points in each channel and calculated the total activity. To estimate the points, we used the Polynomial Fitting Approximation Method. Using the calculated total activity, we could provide the histogram or pseudo-image matrix to help interpretation of results.

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.