• Title/Summary/Keyword: harmonic load

Search Result 688, Processing Time 0.026 seconds

A Multiband Shunt Hybrid Active Filter with Sensorless Control

  • Kumar S, Surendra;Sensarma, Partha Sarathi
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.317-324
    • /
    • 2008
  • This paper proposes a Multiband Shunt Hybrid Active Filter (SHAF) with sensorless control. A plant is modeled in the discrete- time domain and a controller is designed using the Pole shifting law in the polynomial domain. This control approach is very useful for filtering the load harmonics with reduced sensor counts where a low cost solution like SHAF is required. Multiple Synchronous Reference Frames (MSRF) and low pass filters are used to measure the $5^{th}$ and $7^{th}$ harmonic components separately from the load and filter currents. Individual current controllers are designed for the $5^{th}$ and $7^{th}$ harmonic currents. Control is realized in the stationary, three-phase (abc) reference frame. Performance of the controller is validated through simulation, using realistic plant and controller models, as well as experimentally on a full-scale distribution system.

Application of SHE PWM Scheme for Reducing The Source Harmonic Components of Converter (콘버어터의 전원 고조파분을 저감시키기 위한 SHE PWM 방식의 적응)

  • Chung, Dong-Hwa
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1427-1435
    • /
    • 1990
  • This paper proposes the Selected Harmonic Elimination Pluse Width Modulation (SHE PW) scheme toreduce the ahrmonic components of source line current. To eliminate the low order harmonics which affects the source dominatly, we apply the Fourier series analysis to line current waveforms and then find out the switching patterns using the SHE PWM scheme. In addition to the analysis of harmonic effects, the three phase filter circuit is used to reduce high order harmonics. For the experimental realization, the converter circuit with power Transistor(PTR) is designed and the Pulse Time Control(PTC) is applied. The line current and the load voltage are measured under the condition of three phase application, highly inductive load.

  • PDF

Receving-end's power factor improvement and harmonic current filtering useing the private-substion STATCOM (자가변전설비용 STATCOM의 수전단 역률개선과 고조파 전류 필터링)

  • Oh, Young-Woong;Lee, Eun-Woong;Lim, Su-Saeng;Kim, Seok-Gon;Lee, Seung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.79-81
    • /
    • 1998
  • STATCOM can compensate industrial load's reactive power and filter the harmonic of nonlinear load's with the rapid dynamic response. In this paper, STATCOM is modelled to synchronous rotating coordinate by circuit dq transformation, and space vector PWM method is applied for broad voltage modulation. Also predict current controller is used for harmonic current filtering.

  • PDF

A Design of Amplifier Using Harmonic Termination Impedance Matching Tuner and Bias Line (고조파 차단 특성을 가지는 정합용 튜너와 바이어스 선로를 이용한 증폭기 설계)

  • Lee Jin-Kuk;Kim Su-Tae;Lim Jong-Sik;Jeong Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1186-1193
    • /
    • 2005
  • In this paper, a new 3 dB branch line hybrid using asymmetric spiral-shaped defected ground structure(DGS) microstrip is proposed. The proposed branch line hybrid suppresses the 2nd and the 3rd harmonic component effectively. Also a DGS $\lambda$/4 bias line that can suppress high frequency harmonics as well as low frequency intermodulation component is proposed. With the harmonic termination tuner using the proposed hybrid and the harmonic blocking bias line, the 2nd and the 3rd harmonic components of the fabricated amplifier that operated in IMT-2000 basestation transmitting band were suppressed up 25 dB and 27 dB, respectively. The proposed harmonic load-pull setup of amplifier is more easily accomplished with proposed circuits than the previous.

Direct Harmonic Voltage Control Strategy of Shunt Active Power Filters Suitable for Microgrid Applications

  • Munir, Hafiz Mudassir;Zou, Jianxiao;Xie, Chuan;Li, Kay;Younas, Talha;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.265-277
    • /
    • 2019
  • The application of shunt active power filters (S-APFs) is considered to be the most popular approach for harmonic compensation due to its high simplicity, ease of installation and efficient control. Its functionality mainly depends upon the rapidness and precision of its internally built control algorithms. A S-APF is generally operated in the current controlled mode (CCM) with the detection of harmonic load current. Its operation may not be appropriate for the distributed power generation system (DPGS) due to the wide dispersion of nonlinear loads. Despite the fact that the voltage detection based resistive-APF (R-APF) appears to be more appropriate for use in the DPGS, the R-APF experiences poor performance in terms of mitigating harmonics and parameter tuning. Therefore, this paper introduces a direct harmonic voltage detection based control approach for the S-APF that does not need a remote harmonic load current since it only requires a local point of common coupling (PCC) voltage for the detection of harmonics. The complete design procedure of the proposed control approach is presented. In addition, experimental results are given in detail to validate the performance and superiority of the proposed method over the conventional R-APF control. Thus, the outcomes of this study approve the predominance of the discussed strategy.

The harmonic effect analysis about the big capacity load (대용량부하의 고조파 발생으로 인한 타수용가 영향 분석)

  • Park, Yong-Up;Kim, Kil-Sin;Choi, Won-Suc
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.420-421
    • /
    • 2011
  • In generally, the small harmonic current has not influence on the power system because of offset effect. But the bulk harmonic current has not an offset effect, so that influences on the other customer. This paper describes the measurement power quality in the industrial area, and data analysis result. Also this effect has verified by PACAD/EMTDC simulation tool.

  • PDF

Harmonic Analysis of TCSC Power Transmission System considering Load Characteristics (부하 특성을 고려한 TCSC 전력송전 시스템의 고조파 해석)

  • 정교범
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.468-471
    • /
    • 2000
  • This paper investigates the harmonics of TCSC power transmission system having nonlinear VI characteristic loads. Nonlinear VI characteristic components are modelled with Nortons harmonic current sources. The system parameters such as line impedances admittances and node voltages and the thyristor switching action are described in complex Fourier series. EMTP simulation studies with a detailed three-phase TCSC power transmission system are also performed in order to verify the harmonic analysis at the steady state.

  • PDF

Thermomechanical interactions in a transversely isotropic magneto thermoelastic solids with two temperatures and rotation due to time harmonic sources

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.219-245
    • /
    • 2019
  • The present research deals in two dimensional (2D) transversely isotropic magneto generalized thermoelastic solid without energy dissipation and with two temperatures due to time harmonic sources in Lord-Shulman (LS) theory of thermoelasticity. The Fourier transform has been used to find the solution of the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are calculated in transformed domain and further calculated in the physical domain numerically. The effect of two temperature are depicted graphically on the resulting quantities.

A Solid State Controller for Self-Excited Induction Generator for Voltage Regulation, Harmonic Compensation and Load Balancing

  • Singh Bhim;Murthy S. S.;Gupta Sushma
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.109-119
    • /
    • 2005
  • This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self­excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG's offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC- VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads.

Design of DC Side Voltage and Compensation Analysis of THD for Shunt Power Quality Controller under System Load of Rectifier with R-L Load

  • Zhao, Guopeng;Han, Minxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-40
    • /
    • 2015
  • For a shunt power quality controller (SPQC) the DC side voltage value which is closely related to the compensation performance is a significant parameter. Buy so far, very little discussion has been conducted on this in a quantitative manner by previous publications. In this paper, a method to design the DC side voltage of SPQC is presented according to the compensation performance in the single-phase system and the three-phase system respectively. First, for the reactive current and the harmonic current compensation, a required minimal value of the DC side voltage with a zero total harmonic distortion (THD) of the source current and a unit power factor is obtained for a typical load, through the equivalent circuit analysis and the Fourier Transform analytical expressions. Second, when the DC side voltage of SPQC is lower than the above-obtained minimal value, the quantitative relationship between the DC side voltage and the THD after compensation is also elaborated using the curve diagram. Hardware experimental results verify the design method.