• Title/Summary/Keyword: harmonic behavior

Search Result 200, Processing Time 0.025 seconds

The Dynamic Characteristics and Serviceability of Long Span Multi-purpose Hall (장스팬 다목적 홀의 동적특성과 사용성)

  • Lee, Sung-Min;Choi, Chui-Kyung;An, Young-Ki;Lee, Soo-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2003
  • Because structural systems are becoming lighter and more flexible and have lower natural frequencies and dampings than before, coordinated rhythmic activities such as dancing, audience participation in arenas or concert halls, and aerobics result in undesirable levels of vibration. For rhythmic activities, it is resonant or near resonant behavior that result in significant dynamic amplification and hence human discomfort. The most rational design strategy is to provide enough of a gap between the natural frequency of a floor system and the dominant frequencies excited by planned human activities to assure reasonably that resonance will not occur. For the case study the vibration measurements were performed at the floor of a long-span multi-purpose hall during the rock concert of popular singer.

Vibration response of saturated sand - foundation system

  • Fattah, Mohammed Y.;Al-Mosawi, Mosa J.;Al-Ameri, Abbas F.I.
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.83-107
    • /
    • 2016
  • In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

Dynamic Boundary Element Analysis of Underground Structures Using Multi-Layered Half-Plane Fundamental Solutions (2차원 다층 반무한해를 이용한 지하구조계의 동적 경계요소 해석)

  • 김문겸;이종우;조성용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.59-68
    • /
    • 1997
  • In analysis of underground structures, the effects of artificial boundary conditions are considered as one of the major reasons for differences from experimental results. These phenomena can be overcome by using the boundary elements which satisfy the multi-layered half space conditions. The fundamental solutions of multi-layered half-space for boundary element method is formulated satisfying the transmission and reflection of waves at each layer interface and radiation conditions at bottom layer. The governing equations can be obtained from the displacements at each layer which are expressed in terms of harmonic functions. All types of waves can be included using the complete response from semi-infinite integrals with respect to horizontal wavenumbers using expansion of Fourier series and Hankel transformation. Two dimensional Green's functions are derived from cylindrical Navier equations and potentials performing infinite integration in y-direction. In this case, it is effective to transform into two dimensional problem using semi-analytical integration and sinusoidal Bessel function. Some verifications are given to show the accuracy and efficiency of the developed method, and numerical examples to demonstrate the dynamic behavior of underground with various properties.

  • PDF

Dynamic combination resonance characteristics of doubly curved panels subjected to non-uniform tensile edge loading with damping

  • Udar, Ratnakar. S.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.481-500
    • /
    • 2007
  • The dynamic instability of doubly curved panels, subjected to non-uniform tensile in-plane harmonic edge loading $P(t)=P_s+P_d\;{\cos}{\Omega}t$ is investigated. The present work deals with the problem of the occurrence of combination resonances in contrast to simple resonances in parametrically excited doubly curved panels. Analytical expressions for the instability regions are obtained at ${\Omega}={\omega}_m+{\omega}_n$, (${\Omega}$ is the excitation frequency and ${\omega}_m$ and ${\omega}_n$ are the natural frequencies of the system) by using the method of multiple scales. It is shown that, besides the principal instability region at ${\Omega}=2{\omega}_1$, where ${\omega}_1$ is the fundamental frequency, other cases of ${\Omega}={\omega}_m+{\omega}_n$, related to other modes, can be of major importance and yield a significantly enlarged instability region. The effects of edge loading, curvature, damping and the static load factor on dynamic instability behavior of simply supported doubly curved panels are studied. The results show that under localized edge loading, combination resonance zones are as important as simple resonance zones. The effects of damping show that there is a finite critical value of the dynamic load factor for each instability region below which the curved panels cannot become dynamically unstable. This example of simultaneous excitation of two modes, each oscillating steadily at its own natural frequency, may be of considerable interest in vibration testing of actual structures.

Accuracy of combination rules and individual effect correlation: MDOF vs SDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de, Leon-Escobedo, David;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.353-379
    • /
    • 2012
  • The accuracy of the 30% and SRSS rules, commonly used to estimate the combined response of structures, and some related issues, are studied. For complex systems and earthquake loading, the principal components give the maximum seismic response. Both rules underestimate the axial load by about 10% and the COV of the underestimation is about 20%. Both rules overestimate the base shear by about 10%. The uncertainty in the estimation is much larger for axial load than for base shear, and, for axial load, it is much larger for inelastic than for elastic behavior. The effect of individual components may be highly correlated, not only for normal components, but also for totally uncorrelated components. The rules are not always inaccurate for large values of correlation coefficients of the individual effects, and small values of such coefficients are not always related to an accurate estimation of the response. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. In the general case, the level of underestimation or overestimation depends on the degree of correlation of the components, the type of structural system, the response parameter, the location of the structural member and the level of structural deformation. The codes should be more specific regarding the application of these rules. If the percentage rule is used for MDOF systems and earthquake loading, at least a value of 45% should be used for the combination factor.

Analysis of Pole Ratio Effect of Magnetic Reducer (마그네틱 감속기의 극수비 영향 분석)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2020
  • In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification (골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증)

  • Song, Tae-Ha;Lee, Jung-Ho;Choi, Jong Kyun;Lee, Hee Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.

Development of ETMD(Electromagnetic Tuned Mass Damper) for Smart Control of Structure (구조물 스마트제어를 위한 ETMD(Electromagnetic Tuned Mass Damper)개발)

  • Jeon, Seung-Gon;Heo, Gwang-Hee;Lee, Chin-Ok;Lee, Jae-Hoon;Kim, Dae-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2022
  • The TMD has a simple structure than other vibration control devices and shows excellent control performance for the simple harmonic vibration generated in the structure. However, the vibration control range is narrower than other control devices, making it vulnerable to vibration cycles caused by unexpected external loads. The ETMD developed in this study consisted of Mass with electromagnets. Therefore when supplying a current, the magnetic field is formed to increase the friction force with the friction plate, thereby instantaneously controlling the behavior of the Mass. The experiment was conducted to compare the control performance of the control device by installing the ETMD developed for control performance evaluation in the center of the model simple beam bridge to forced excitation at 3.02 Hz where the maximum bending displacement occurs. As a result of the experiment, ETMD exhibited excellent control performance with a maximum bending displacement attenuation rate of 57.51%.