• Title/Summary/Keyword: hardware fault detection

Search Result 76, Processing Time 0.023 seconds

Fuzzy Model-Based Fault Detection Method of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 퍼지모델 기반 고장검출 방법)

  • Moon, Byoung-Joon;Kim, Dong-Han;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1009-1013
    • /
    • 2009
  • In this paper, a robust fault detection method for varying temperature based on fuzzy model is proposed. To develop a robust force estimation model, it needs temperature information because the output of force sensor is affected by a temperature variation. The nonlinear dynamic system, such as the parking force of the EPB (Electronic Parking Brake) system is necessary to have a higher order equation model. But, because of the calculation time, the higher order equation model is hard to be used in real application. In case of the lower order equation model, the result is not as accurate as acceptable. To solve this problem, the robust fuzzy model-based fault detection is developed. A proposed fault detection method for varying temperature is verified by HILS (hardware in the loop simulation).

A Simple Fault Correction Method for Rotor Position Detection of Brushless DC Motor using a Latch Type Hall Effect Sensor

  • Baik In-Cheol;Joo Hyeong-Gil
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.62-66
    • /
    • 2005
  • A simple fault correction method for rotor position detection of a brushless DC(BLDC) motor with trapezoidal back EMF(electromotive force) using a Hall effect latch unit is presented. The reason why the Hall effect latch unit does not operate properly during the startup of a BLDC motor is thoroughly explained. To solve this problem, a simple code change method and its hardware implementation issues are proposed and discussed.

Model-Free Hybrid Fault Detection and Isolation For UAV Inertial Measurement Sensors (무인기 관성측정 센서의 비모델 복합 고장진단기법)

  • Kim, Seung-Keun;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • In this paper, a redundancy management system for aircraft is studied, and FDI (Fault Detection and Isolation) algorithm of inertial sensor system is proposed. UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional FDI method cannot isolate multiple faults in a triple redundancy system. In this paper, hardware based FDI technique is proposed, which combines a parity equation approach with the wavelet based technique, which is a model-free FDI method. To verify the effectiveness of the proposed FDI method, numerical simulations are performed.

Error Detection Architecture for Modular Operations (Modular 연산에 대한 오류 탐지)

  • Kim, Chang Han;Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.193-199
    • /
    • 2017
  • In this paper, we proposed an architecture of error detection in $Z_N$ operations using $Z_{(2^r-1)N}$. The error detection can be simply constructed in hardware. The hardware overheads are only 50% and 1% with respectively space and time complexity. The architecture is very efficient because it is detection 99% for 1 bit fault. For 2 bit fault, it is detection 99% and 50% with respective r=2 and r=3.

Fault Detection of Aircraft Turbofan Engine System Using a Fault Detection Filter (고장 검출 필터를 사용한 항공기 터보팬 엔진 시스템의 고장 검출)

  • Bae, Junhyung
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.330-336
    • /
    • 2021
  • A typical way to reduce the number of hardware redundancy configurations is to implement them as analytical techniques for detecting, identifying and accepting failures with micro-controller. In this paper, one of the analytical techniques, the fault detection filter, is applied to aircraft turbofan engine system. The fault detection filter is a special type of observer that has the advantage of being able to determine the location of failures by maintaining a constant direction in the output space in the event of a particular failure. We present a single input/output dynamic system modeling of air turbine system in turbofan engine, a fault detection filter design, and simulation results applying it. Simulation results show that fault detection can be effectively applied as a sensitivity effect to the directionality of the detection filter.

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

A New Immunotronic Approach to Hardware Fault Detection Using Symbiotic Evolution (공생 진화를 이용한 Immunotronic 접근 방식의 하드웨어 오류 검출)

  • Lee, Sang-Hyung;Kim, Eun-Tai;Lee, Hee-Jin;Park, Mignon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.5
    • /
    • pp.59-68
    • /
    • 2005
  • A novel immunotronic approach to fault detection in hardware based on symbiotic evolution is proposed in this paper. In the immunotronic system, the generation of tolerance conditions corresponds to the generation of antibodies in the biological immune system. In this paper, the principle of antibody diversity, one of the most important concepts in the biological immune system, is employed and it is realized through symbiotic evolution. Symbiotic evolution imitates the generation of antibodies in the biological immune system morethan the traditional GA does. It is demonstrated that the suggested method outperforms the previous immunotronic methods with less running time. The suggested method is applied to fault detection in a decade counter (typical example of finite state machines) and MCNC finite state machines and its effectiveness is demonstrated by the computer simulation.

Fault Detection System Using Spatial Index Structure (공간자료구조를 활용한 단층인식 시스템)

  • Bang, Kap-San
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1205-1208
    • /
    • 2005
  • By adding user interface to the usual router, an improved functional router is implemented in this paper. Due to the massive amount of spatial data processing, spatial information processing area has been rapidly grown up in recent years based on powerful computer hardware and software development. Spatial index structures are the core engine of geographic information system(GIS). Analyzing and processing of spatial information using GIS has a lot of applications and the number application will be increased in the future. However, study on the under ground is in its infancy due to invisible characteristic of this information. This paper proposes the sub-surface fault detection system using the sub-surface layer information gathered from elastic wave. Detection of sub-surface fault provides very important information to the safety of above and sub-surface man made structures. Development of sub-surface fault detection system will serve as a pre-processing system assisting the interpretation of the geologist.

  • PDF

A Fault Detection and Self-Recovery System for Space-Borne Dual Ring Counters (우주용 중복구조 링 카운터를 위한 고장 진단 및 자가 복구 시스템)

  • Kwak, Seong Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.120-126
    • /
    • 2013
  • This paper proposes a novel scheme of fault detection and self-recovery for space-borne dual ring counters subject to transient faults. The considered ring counter is equipped with hardware redundancy, but it has a limited output domain where direct access to the current state is unavailable. We employ the theory of corrective control to detect any transient fault occurring to the counter bits and to realize immediate self-recovery of the ring counter back to the normal state. The structure of the fault-tolerant controller is designed to be minimal regardless of the counter size. To validate the applicability, we implement the proposed system on a commercial FGPA board.

Robust Model Based Fault Detection of EPB System for Varying Temperature (온도변화에 강인한 EPB 시스템의 모델기반 고장검출 방법)

  • Moon, Byoung-Joon;Park, Chong-Kug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.26-30
    • /
    • 2009
  • In this paper, a robust model based fault detection for varying temperature is proposed, To develop a robust force estimation model, it needs temperature information because the force sensor's output is affected by a temperature variation. If an EPB system does not include a temperature sensor, the model has a much larger error than an EPB system with a built-in temperature sensor. Therefore, the temperature is estimated by using Ohm's law. The force model is applied with a motor current, battery voltage, operation mode, and the estimated temperature to detect a force sensor's abnormal signal fault. The residual is calculated by comparing the value of the measured force and the estimated force. Fault information is collected by using the output of the evaluated residual with the adaptive thresholds. A proposed robust model based fault detection for varying temperature was verified by HILS (Hardware in the Loop Simulation).