A New Immunotronic Approach to Hardware Fault Detection Using Symbiotic Evolution

공생 진화를 이용한 Immunotronic 접근 방식의 하드웨어 오류 검출

  • 이상형 (연세대학교 전기전자공학과) ;
  • 김은태 (연세대학교 전기전자공학과) ;
  • 이희진 (국립 한경대학교 정보제어공학과) ;
  • 박민용 (연세대학교 전기전자공학과)
  • Published : 2005.09.25

Abstract

A novel immunotronic approach to fault detection in hardware based on symbiotic evolution is proposed in this paper. In the immunotronic system, the generation of tolerance conditions corresponds to the generation of antibodies in the biological immune system. In this paper, the principle of antibody diversity, one of the most important concepts in the biological immune system, is employed and it is realized through symbiotic evolution. Symbiotic evolution imitates the generation of antibodies in the biological immune system morethan the traditional GA does. It is demonstrated that the suggested method outperforms the previous immunotronic methods with less running time. The suggested method is applied to fault detection in a decade counter (typical example of finite state machines) and MCNC finite state machines and its effectiveness is demonstrated by the computer simulation.

본 논문에서는 하드웨어 오류 검출을 위하여 공생 진화(symbiotic evolution)에 기반을 둔 새로운 immunotronic 알고리즘을 제안한다. 면역학(immunology)과 전자공학(Electronics)을 결합한 immunotronic 시스템에서 가장 중요한 점은 포용 조건 (tolerance condition)을 생성하는 방식이다. 여기서 포용 조건 생성은 생체 면역 시스템에서의 항체 생성을 의미한다. 본 논문에서는 생체 면역 시스템에서 매우 중요한 개념인 항체의 다양성 원리(principle of antibody diversity)를 포용 조건 생성에 적용한 후 공생 진화를 통하여 이를 구현한다. 공생 진화는 기존의 유전자 알고리즘(standard genetic algorithm, SGA)에 비해서 더욱 더 생체 면역 시스템이 항체를 생성하는 방식과 유사하며 이러한 방식은 이전의 immunotronic 방식에 비해서 더 향상된 비자기 검출 율을 보여 준다. 이렇게 제안된 알고리즘을 FSM(Finite State Machine)의 가장 전형적인 예인 십진 카운터와 MCNC benchmark FSM에 적용한 후 컴퓨터 모의 실험을 통해 그 성능을 확인한다.

Keywords

References

  1. S. Forrest, B. Javornik, R.E. Smith & A.S. Perelson, 'Using Genetic Algorithms to Explore Pattern Recognition in the Immune System,' Evolutionary Computation, Vol.1 no.3, pp. 191-211, 1993 https://doi.org/10.1162/evco.1993.1.3.191
  2. D. Dasgupta and S. Forrest, 'An anomaly detection algorithm inspired by the immune system,' Artificial Immune System and Their Applications, D. Dasgupta, Ed. Berlin Germany : Spinger-Verlag, pp. 262-277, 1998
  3. J. Timmis, M. Neal, J. Hunt, 'Data analysis using artificial immune systems, cluster analysis and Kohonen networks: some comparisons,' Proc. of IEEE SMC '99 Conference, Vol. 3 ,pp. 922- 927, 1999 https://doi.org/10.1109/ICSMC.1999.823351
  4. D. Dasgupta, 'An artificial immune system as a multi-agent decision support system,' Proc. of IEEE Int. Conf. Systems, Man and Cybernetics, pp. 3816-3820, Oct. 1998 https://doi.org/10.1109/ICSMC.1998.726682
  5. K. Mori, M. Tsukiyama, T. Fukuda, 'Adaptive scheduling system inspired by immune system,' Proc. of IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4 , pp. 3833 - 3837, Oct. 1998 https://doi.org/10.1109/ICSMC.1998.726685
  6. E. Hart, P. Ross, J. Nelson, 'Producing robust schedules via an artificial immune system,' Proc. of IEEE World Congress on Computational Intelligence,, pp. 464-469, May 1998 https://doi.org/10.1109/ICEC.1998.699852
  7. R. Xiao, L. Wang, Y. Liu 'A framework of AIS based pattern classification and matching for engineering creative design,' Proc. of International Conference on Machine Learning and Cybernetics, Vol. 3. pp. 1554-1558, Nov. 2002 https://doi.org/10.1109/ICMLC.2002.1167471
  8. A. Ishiguro, R. Watanabe, Y. Uchikawa, 'An immunological approach to dynamic behavior control for autonomous mobile robots,' Proc. of 1995 IEEE/RSJ International Conference on Human Robot Interaction and Cooperative Robots, pp. 495-500, Aug. 1995 https://doi.org/10.1109/IROS.1995.525842
  9. G. Luh and C. Chueh, 'Multi-modal topological optimization of structure using immune algorithm,' Computer Methods in Applied Mechanics and Engineering Vol. 193, no.36-38, pp. 4035-4055, Sep. 2004 https://doi.org/10.1016/j.cma.2004.02.013
  10. P. K. Harmer, P. D. Williams, G. H. Grunsch, and G. B. Lamont, 'An Artificial Immune System Architecture For Computer Security Applications,' IEEE Trans. on Evolutionary Computation, Vol.6, no.3, pp. 252-280, Jun. 2002 https://doi.org/10.1109/TEVC.2002.1011540
  11. S. Forrest, S.A. Hofmeyr, A. Somayaji, and T.A. Longstaff, 'A Sense of Self for Unix Processing,' Proc. of IEEE Symp. Computer Security and Privacy, pp.120-128, May 1996 https://doi.org/10.1109/SECPRI.1996.502675
  12. D. W. Bradley and A .M. Tyrrell, 'Immunotronics-Novel Finite-State-Machine Architectures With Built-In Self-Test Using Self-Nonself Differentiation,' IEEE Trans. on Evolutionary Computation, Vol.6, no. 3, pp. 227-238, Jun. 2002 https://doi.org/10.1109/TEVC.2002.1011538
  13. Y. Chen and T. Chen, 'Implementing fault-tolerance via modular redundancy with comparison,' IEEE Trans. on Reliability, Vol. 39 no. 2, pp. 217 225, Jun 1990 https://doi.org/10.1109/24.55885
  14. S. Dutt and N.R Mahapatra, 'Node-covering, error-correcting codes and multiprocessors with very high average fault tolerance,' IEEE Trans. Comput., Vol. 46, pp.997-1914, Sep.1997 https://doi.org/10.1109/12.620481
  15. P. K. Lala, Digital Circuit Testing and Testablilty, New York: Academic, 1997
  16. S. Forrest, L. Allen, A.S. Perelson, and R. Cherukuri, 'Self-Nonself Discrimination In A Computer,' Proc. of IEEE Symposium on Research in Security and Privacy, pp. 202-212, 1994 https://doi.org/10.1109/RISP.1994.296580
  17. P. D'haeseller, S. Forrest, P. Helman, 'An Immunological Approach to Change Detection : Algorithms, Analysis and Implications,' Proc. of IEEE Symp. on Security and Privacy, 1996 https://doi.org/10.1109/SECPRI.1996.502674
  18. S. Lee, E. Kim, M. Park, 'A Biologically Inspired New Hardware Fault Detection : immunotronic and Genetic Algorithm-Based Approach,' International Journal of Fuzzy Logic and Intelligent Systems, Vol. 4 , no. 1, pp7-11, June, 2004 https://doi.org/10.5391/IJFIS.2004.4.1.007
  19. R.A. Goldsby, T.J. Kindt, and B.A Osborne, Kuby Immunology, 4th ed. W.H Freeman and Company: New York, 2000
  20. C. Juang, J. Lin, and C. Lin, 'Genetic Reinforcement Learning through Symbiotic Evolution for Fuzzy Controller Design,' IEEE Trans. on Systems, Man And Cybernetics-Part B Cybernetics, Vol.30, no. 2 April 2000 https://doi.org/10.1109/3477.836377
  21. D. E. Moriarty and R. Miikkulanien, 'Efficient reinforcement learning through symbiotic evolution,' Mach. Learn, Vol.22, pp.11-32, 1996 https://doi.org/10.1007/BF00114722
  22. R. E. Smith, S. Forrest and A.S. Perelson, 'Searching for diverse, cooperative populations with genetic algorithms,' Evol. Comput., Vol.1, no.2 pp 127-149 1993 https://doi.org/10.1162/evco.1993.1.2.127
  23. I. Roitt, J. Brostoff, and D. Male, Immunology, 5th ed. St Louis, MOL Mosby International Limited, 1998
  24. S. Yang 'Logic Synthesis and Optimization Benchmarks User Guide Version 3.0,' Technical Report, Microelectronics Center of North Carolina, 1991