• Title/Summary/Keyword: hardware

Search Result 8,649, Processing Time 0.045 seconds

Design of High Speed Encryption/Decryption Hardware for Block Cipher ARIA (블록 암호 ARIA를 위한 고속 암호기/복호기 설계)

  • Ha, Seong-Ju;Lee, Chong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1652-1659
    • /
    • 2008
  • With the increase of huge amount of data in network systems, ultimate high-speed network has become an essential requirement. In such systems, the encryption and decryption process for security becomes a bottle-neck. For this reason, the need of hardware implementation is strongly emphasized. In this study, a mixed inner and outer round pipelining architecture is introduced to achieve high speed performance of ARIA hardware. Multiplexers are used to control the lengths of rounds for 3 types of keys. Merging of encryption module and key initialization module increases the area efficiency. The proposed hardware architecture is implemented on reconfigurable hardware, Xilinx Virtex2-pro. The hardware architecture in this study shows that the area occupied 6437 slices and 128 BRAMs, and it is translated to throughput of 24.6Gbit/s with a maximum clock frequency of 192.9MHz.

CMOS-IC Implementation of a Pulse-type Hardware Neuron Model with Bipolar Transistors

  • Torita, Kiyoko;Matsuoka, Jun;Sekine, Yoshifumi
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.615-618
    • /
    • 2000
  • A number of studies have recently been made on hardware for a biological neuron f3r application with information processing functions of neural networks. We have been trying to produce hardware from the viewpoint that development of a new hardware neuron model is one of the important problems in the study of neural networks. In this paper, we first discuss the circuit structure of a pulse-type hardware neuron model with the enhancement-mode MOSFETs (E-MOSFETs). And we construct a pulse-type hardware neuron model using I-MOSFETs. As a result, it is shown that our proposed new model can exhibit firing phenomena even if the power supply voltage becomes less than 1.5[V]. So it is verified that our model is profitable for IC.

  • PDF

A Study on the Evolvable Hardware Design (EHW) (진화형하드웨어 설계에 관한 연구)

  • Kim, Jong-O;Kim, Duck-Soo;Lee, Won-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.449-450
    • /
    • 2007
  • Evolvable hardware(EHW) is a dynamic field that brings together reconfigurable hardware, artificial intelligence, fault tolerance and autonomous systems. This paper gives an introduction to the field. The features that can be used to identify and classify evolvable hardware are the evolutionary algorithm, the implementation and the genotype representation. Evolvable hardware (EHW) is hardware that can change its own circuit structure by genetic learning to achieve maximum adaptation to the environment. In conventional EHW, the learning is executed by software on a computer.

  • PDF

Increasing Diversity of Evolvable Hardware with Speciation Technique (종분화 기법을 이용한 진화 하드웨어의 다양성 향상)

  • Hwang Keum-Sung;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.1
    • /
    • pp.62-73
    • /
    • 2005
  • Evolvable Hardware is the technique that obtains target function by adapting reconfigurable digital' devices to environment in real time using evolutionary computation. It opens the possibility of automatic design of hardware circuits but still has the limitation to produce complex circuits. In this paper, we have analyzed the fitness landscape of evolvable hardware and proposed a speciation technique of evolving diverse individuals simultaneously, proving the efficiency empirically. Also, we show that useful extra functions can be obtained by analyzing diverse circuits from the speciation technique.

The Study on Hardware Sizing Method Based on the Calculating (계산에 기초한 하드웨어 도입 규모산정 방식 연구)

  • Ra, Jong-Hei;Choi, Kwang-Don;Jung, Hae-Yong
    • Journal of Information Technology Services
    • /
    • v.5 no.1
    • /
    • pp.47-59
    • /
    • 2006
  • According to the policy for "e-Korea construction" of Korean government, Investment of information system during the past decade are dramatically increasing. More than a half of this investment is cost of hardware infrastructure. So, accurate hardware sizing are essential for higher efficiency of investment. Accurate hardware sizing benefits are generally viewed in terms of the avoidance of excess equipment and lost opportunity costs by not being able to support business needs. Unfortunately, however, little research effort to make the hardware sizing methodology are doing. We propose a sizing method for information system in public sector. This method is determinate empirical study that are gathering and analyzing cases, making method and reviewing expert. Finally we are proposed calculating method for hardware components that is CPU, memory, internal and external disk according to the application system type which is OLTP, Web, WAS. Our study certainly will act as a catalyst for higher investment-efficiency of the future information programs in public sector.

Spectral Efficiency of Full-Duplex Wireless Backhaul with Hardware Impaired Massive MIMO for Heterogeneous Cellular Networks

  • Anokye, Prince;Lee, Kyoung-Jae
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.13-25
    • /
    • 2018
  • The paper analyzes the sum spectral efficiency (SE) for a heterogeneous cellular network (HetNet) which has the backhaul, provided with wireless full-duplex massive multiple-input multiple-out (MIMO) with hardware distortions. We derive approximate expressions to obtain the uplink/downlink sum SE of the backhaul. The analytic results have been shown to be exact when compared to Monte Carlo simulations. From the analysis, it is shown that the desired signal and the hardware distortion noise have the same order. The sum SE generally improves when the number of receive antennas increases but degrades when the hardware quality reduces. A sum SE performance ceiling is introduced by the hardware quality level.

Efficient Attribute Based Digital Signature that Minimizes Operations on Secure Hardware (보안 하드웨어 연산 최소화를 통한 효율적인 속성 기반 전자서명 구현)

  • Yoon, Jungjoon;Lee, Jeonghyuk;Kim, Jihye;Oh, Hyunok
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.344-351
    • /
    • 2017
  • An attribute based signature system is a cryptographic system where users produce signatures based on some predicate of attributes, using keys issued by one or more attribute authorities. If a private key is leaked during signature generation, the signature can be forged. Therefore, signing operation computations should be performed using secure hardware, which is called tamper resistant hardware in this paper. However, since tamper resistant hardware does not provide high performance, it cannot perform many operations requiring attribute based signatures in a short time frame. This paper proposes a new attribute based signature system using high performance general hardware and low performance tamper resistant hardware. The proposed signature scheme consists of two signature schemes within a existing attribute based signature scheme and a digital signature scheme. In the proposed scheme, although the attribute based signature is performed in insecure environments, the digital signature scheme using tamper resistant hardware guarantees the security of the signature scheme. The proposed scheme improves the performance by 11 times compared to the traditional attribute based signature scheme on a system using only tamper resistant hardware.

A Study of Machine Learning based Hardware Trojans Detection Mechanisms for FPGAs (FPGA의 Hardware Trojan 대응을 위한 기계학습 기반 탐지 기술 연구)

  • Jang, Jaedong;Cho, Mingi;Seo, Yezee;Jeong, Seyeon;Kwon, Taekyoung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.109-119
    • /
    • 2020
  • The FPGAs are semiconductors that can be redesigned after initial fabrication. It is used in various embedded systems such as signal processing, automotive industry, defense and military systems. However, as the complexity of hardware design increases and the design and manufacturing process globalizes, there is a growing concern about hardware trojan inserted into hardware. Many detection methods have been proposed to mitigate this threat. However, existing methods are mostly targeted at IC chips, therefore it is difficult to apply to FPGAs that have different components from IC chips, and there are few detection studies targeting FPGA chips. In this paper, we propose a method to detect hardware trojan by learning the static features of hardware trojan in LUT-level netlist of FPGA using machine learning.

Smart grid and nuclear power plant security by integrating cryptographic hardware chip

  • Kumar, Niraj;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3327-3334
    • /
    • 2021
  • Present electric grids are advanced to integrate smart grids, distributed resources, high-speed sensing and control, and other advanced metering technologies. Cybersecurity is one of the challenges of the smart grid and nuclear plant digital system. It affects the advanced metering infrastructure (AMI), for grid data communication and controls the information in real-time. The research article is emphasized solving the nuclear and smart grid hardware security issues with the integration of field programmable gate array (FPGA), and implementing the latest Time Authenticated Cryptographic Identity Transmission (TACIT) cryptographic algorithm in the chip. The cryptographic-based encryption and decryption approach can be used for a smart grid distribution system embedding with FPGA hardware. The chip design is carried in Xilinx ISE 14.7 and synthesized on Virtex-5 FPGA hardware. The state of the art of work is that the algorithm is implemented on FPGA hardware that provides the scalable design with different key sizes, and its integration enhances the grid hardware security and switching. It has been reported by similar state-of-the-art approaches, that the algorithm was limited in software, not implemented in a hardware chip. The main finding of the research work is that the design predicts the utilization of hardware parameters such as slices, LUTs, flip-flops, memory, input/output blocks, and timing information for Virtex-5 FPGA synthesis before the chip fabrication. The information is extracted for 8-bit to 128-bit key and grid data with initial parameters. TACIT security chip supports 400 MHz frequency for 128-bit key. The research work is an effort to provide the solution for the industries working towards embedded hardware security for the smart grid, power plants, and nuclear applications.

Embedded One Chip Computer Design for Hardware Implementation of Genetic Algorithm (유전자 알고리즘 하드웨어 구현을 위한 전용 원칩 컴퓨터의 설계)

  • 박세현;이언학
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.82-90
    • /
    • 2001
  • Genetic Algorithm(GA) has known as a method of solving NP problem in various applications. Since a major drawback of the GA is that it needs a long computation time, the hardware implementation of Genetic Algorithm is focused on in recent studies. This paper proposes a new type of embedded one chip computer fort Hardware Implementation of Genetic Algorithm. The proposed embedded one chip computer consists of 16 Bit CPU care and hardware of genetic algorithm. In contrast to conventional hardware oriented GA which is dependent on main computer in the process of GA, the proposed embedded one chip computer is independent on main computer. Conventional hardware GA uses the fixed length of chromosome but the proposed embedded one chip computer uses the variable length of chromosome by employing the efficient 16 bit Pipeline Unit. Experimental results show that the proposed one chip computer is applicable to the design of evolvable hardware for Random NRZ bit synchronization circuit.

  • PDF