• Title/Summary/Keyword: hardness effect

Search Result 2,815, Processing Time 0.03 seconds

Antimicrobial Activity of Paeonia japonica Extract and Its Quality Characteristic Effects in Sulgidduk (백작약 추출물의 항균효과 및 설기떡의 품질특성에 미치는 영향)

  • Choi, Hae-Yeon
    • Korean journal of food and cookery science
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2009
  • In this study, Paeonia japonica powder was extracted with ethanol, and its antimicrobial activity was investigated. The ethanol extract of the P. japonica had antimicrobial activity against Bacillus subtilis, Escherichia coli and Staphylococcus aureus. The inhibition zones of the P. japonica ethanol extract (3 mg/disc) against B. subtilis, E. coli and S. aureus were 10, 11, 8.5 mm, respectively. To test the food preservation effect of P. japonica and determine the optimal ratio of the P. japonica extract in the formulation, Sulgidduk samples were prepared with substitutions of 0, 0.25, 0.5, 0.75 and 1% P. japonica extract, and the quality characteristics of the samples were then investigated over 4 days of storage. In these experiments, total cell counts tended to decrease as the amount of added P. japonica extract increased. Moisture contents were not significantly different among the Sulgidduk samples. As the content of the P. japonica extract increased, the L-values of the samples decreased and the a- and b- values increased. In regards to the textural characteristics, the hardness, gumminess, and chewiness of the Sulgidduk samples decreased as the amount of P. japonica extract increased; however, they increased with the progression of storage time. Adhesiveness, springiness and cohesiveness were not significantly different at the different P. japonica extract concentrations and decreased with storage time. In the sensory evaluation, the control group had significantly higher scores for color, flavor and after taste as compared to the P. japonica extract added groups. When the P. japonica extract content was increased, the flavor and overall acceptability decreased, while Bakjakyak flavor, bitterness and off-flavor increased. Softness was not significantly different among the samples. In conclusion, the results indicate that substituting $0.25{\sim}1%$ P. japonica extract in Sulgidduk is optimal for quality and provides a product with reasonably high overall acceptability.

Effect of Cordyceps ochraceostromat, Silkworm Cocoon, and Conjugated Linoleic Acid on the Quality and Storage Characteristics of Pork Sausage Manufactured by MDCM (Mechanically Deboned Chicken Meat) Recovered Protein (기계발골계육 회수단백질을 활용한 돈육 소시지의 품질 및 저장성 향상을 위한 동충하초, 누에고치 및 Conjugated Linoleic Acid의 첨가 효과)

  • Jin, Sang-Keun;Kim, Il-Suk;Kang, Suk-Nam;Hur, In-Chul;Choi, Seung-Yun;Kang, Sang-Ha;Yang, Han-Sul;Joo, Seon-Tea;Park, Gu-Boo
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.243-251
    • /
    • 2010
  • This study was conducted to investigate the effects of the addition of cordyceps ochraceostromat, conjugated linoleic acid (CLA) and silkworm cocoon on the quality and storage characteristics of pork sausage manufactured by MDCM (mechanically deboned chicken meat) recovered protein. The samples were divided into 5 groups (sausage made from pork ham; control, 40% of MDCM recovered protein to replace pork ham; T1, 40% of MDCM recovered protein to replace pork ham with 0.1% cordyceps ochraceostromat; T2, 40% of MDCM recovered protein to replace pork ham with 0.1% CLA; T3, and 40% of MDCM recovered protein to replace pork ham with 0.1% silkworm cocoon; T4). The control sample had a higher moisture and protein contents and lower fat content than the other samples during 4 weeks of storage at $4^{\circ}C$ The treatment samples had lower lightness and higher redness values than the control (p<0.05). Hardness, cohesiveness, gumminess and chewiness were significantly lower in the treatment samples than the control (p<0.05). All sausage samples showed a significant increase in thiobarbituric acid reactive substances (TBARS), volatile basic nitrogen, and total plate counts during the storage time (p<0.05). In addition, the MDCM treatment samples had higher TBARS values than the control, but the VBN value of the treatment samples was lower than the control after the 4 weeks storage period.

Influence of resin-nanoceramic CAD/CAM block shade and thickness on the microhardness of dual-cured resin cement (레진-나노세라믹 CAD/CAM블록의 색조와 두께가 이원중합 레진시멘트의 미세경도에 미치는 영향)

  • Choi, Ga-Young;Park, Jeong-Kil;Jin, Myoung-Uk;Kwon, Yong Hoon;Son, Sung-Ae
    • Korean Journal of Dental Materials
    • /
    • v.44 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • The purpose of this study was to examine the effect of shade and thickness of resin-nanoceramic CAD-CAM block (RNB) on the microhardness of dual-cured resin cement, as well as to measure the number of photons transmitted through RNBs of different thicknesses and colors. One dual-cured resin cement was used to prepare resin cement specimens. Resin cement specimens were light-cured for 40 seconds through 3 shades (A1, A2, A3 in HT (high translucency) and LT (low translucency) respectively) and four thicknesses (1, 2, 3, 4 mm) of RNB specimens. Vickers microhardness measurements of resin cement specimens were performed using a Vickers hardness tester. The light transmission of RNB specimens was measured using a spectrometer (SpectroPro-500, Acton Research, Acton, MA, U.S.A.), and the translucency parameter was calculated using the CIEL*a*b* system. Data were statistically analyzed by ANOVA and Tukey's test. There was a significant decrease of microhardness of resin cement specimen with an overlay of 4 mm of RNB thickness and A3 shade in comparison to A1 and 1 mm, respectively (p<0.05). The translucency parameter values and light transmission of RNBs tested differed significantly, according to the thicknesses of the specimen (p<0.05). Light transmission is decreased with increase in the thicknesses of RNBs. Shade A1 transmitted more light than darker blocks. A decrease in microhardness of resin cement specimens was observed with increasing thickness and shade (A1 to A3) of RNBs.

Effects of Tile Drain on Physicochemical Properties and Crop Productivity of Soils under Newly Constructed Plastic Film House (신설 하우스 시설재배지의 파이프 암거배수 효과)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.154-162
    • /
    • 2003
  • This study was conducted to investigate the effects of tile drain on Physicochemical properties and crop productivity of soils under plastic film house for three years (1999 - 2001). Tiles (${\Phi}100mm$ PVC pipe) were established at 50-60 cm depth with 1 m, 2 m, and 3 m intervals in Gangseo silt loam soil under 2W-type plastic film house. Cropping system was a pumpkin-pumpkin in the first year, a cucumber-spinach-crown daisy-spinach-young radish in the second year, and a green red pepper-tomato-spinach in last year, with conventional fertilization and drip or furrow irrigation by groundwater pumping. Bulk density and soil hardness of plot with tile drain were lower than those of control (plot without tile drain). Soil water content was also lower in tile drain plot than in control regardless of soil depth, and decreased at narrower interval and longer distance from tile in the same plot, thus suggesting that water flow and density of tile drain plot was higher than those of control. Rhizosphere of spinach, a final crop of third year, was expanded more than 2 cm due probably to improvement of soil physical properties caused by tiles establishment. Electrical conductivity (EC) of topsoil decreased from $1.22dS\;m^{-1}$ to $0.82dS\;m^{-1}$ by tile drain system, and the extent of EC decrease was different with season: higher in spring and lower in summer and autumn. The $NO_{3^-}-N$ concentration in topsoil decreased, from $200mg\;kg^{-1}$ to $39mg\;kg^{-1}$. The effect of tile drain on crop yield varied with crops. Average crop productivity obtained in tile drain plot than that of control crop: 18.2% in 2 m interval, 14.2% in 3 m interval, but lower 0.2% in 1 m interval.

Effect of Long-Term Annual Dressing of Organic Matter on Physico-Chemical Properties and Nitrogen Uptake in the Paddy Soil of Fluvio-Marine Deposit (하해혼성 평야지 논토양에서 유기물 장기 연용이 토양의 이화학적 특성 변화 및 질소 흡수에 미치는 영향)

  • Yang, Chang-Hyu;Jeong, Ji-Ho;Kim, Taek-Kyum;Kim, Sun;Baek, Nam-Hyun;Choi, Weon-Young;Kim, Young-Doo;Jung, Won-Kyo;Kim, Si-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.981-986
    • /
    • 2010
  • This study was carried out to investigate the effects of fertilizer and organic resource annual dressing for 30 years of Jeonbug series (silt loam) on soil properties and rice N uptake in paddy field soil. In the study field, treatments including control (NPK), NPK+rice straw, NPK+rice straw compost and nitrogen fertilization levels at 0, 100, 150, 200, 250 kg $ha^{-1}$ have been imposed for 30 years. Soil hardness and bulk density decreased from 15.7 mm and 1.381 Mg $m^{-3}$ in the control to 12.5 mm and 1.244 Mg $m^{-3}$ in NPK+rice straw compost treatment, respectively, indicating improvement of soil physical conditions such as porosity. Co-application of straw compost with NPK also result in a better chemical properties than NPK alone as it increased available phosphate (from 96 to 133 mg $kg^{-1}$), available silicate (from 81 to 116 mg $kg^{-1}$), and cation exchange capacity (from 9.8 to 11.4 $cmol_c\;kg^{-1}$). Soil organic matter concentration of top soil (0 to 7.5 cm in depth) was higher in NPK+rice straw and NPK+rice straw compost than in control. Fertilizer N uptake amount was much higher in NPK+rice straw (nitrogen fertilization level; 250 kg $ha^{-1}$) and NPK+rice straw compost (nitrogen fertilization levels; 200, 250 kg $ha^{-1}$) plots compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Nitrogen use efficiency was showed significantly high in the NPK+rice straw compost (nitrogen fertilization levels; 100, 150 kg $ha^{-1}$) plot compared to the control (nitrogen fertilization level; 100 kg $ha^{-1}$) plot. Therefore, it was suggested that application of organic inputs is helpful in improving soil fertility and physical conditions and thus in N uptake.

Changes in Rice Yield and Soil Organic Matter Content under Continued Application of Rice Straw Compost for 50 Years in Paddy Soil (볏짚퇴비 50년 연용에 따른 벼수량과 논토양 유기물함량 변화)

  • Yeon, Byeong-Yeol;Kwak, Han-Kang;Song, Yo-Seong;Jun, Hee-Joong;Cho, Hyun-Jun;Kim, Chong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.454-459
    • /
    • 2007
  • This experiment was conducted to investigate the effect of long-term continuous application of fertilizers for rice cultivation from 1954 to 2003. Changes of physical and chemical properties of paddy soil and the rice yield by continuous application of fertilizers, particularly rice straw compost, over fifty years were discussed in this paper. The rice yields of compost applied plots were 5~12% higher while those of no fertilizer plots were 21~38% lower compared to those of NPK fertilizers applied plots. Uptakes of T-N, $P_2O_5$, $K_2O$, CaO, MgO, and $SiO_2$ by rice plants were significantly increased by the application of straw compost. Bulk density, hardness, and liquid phase of soil in compost applied plots were significantly decreased while gaseous phase and cation exchange capacity (CEC) of soil were increased compare to those in NPK plots. When the bulk density of soil was increased the rice yield was decreased. The soil organic matter (SOM) content tended to increase in compost applied plots whereas no significant differences were found in other treatments. The soil organic matter content increased by $0.4g\;kg^{-1}\;yr^{-1}$ when $7.5Mg\;ha^{-1}\;yr^{-1}$ of rice straw compost applied in paddy land. The compost application rate recommendation for rice cultivation in Korea could be revised by the results of this study.

The Vegetation Effect of under Neutralizing Layer Type on the Acid Drainage Slope (산성배수 비탈면의 중화층 종류에 따른 녹화효과)

  • Cho, Sung Rok;Kim, Jae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.493-503
    • /
    • 2019
  • This study is composed of nine treatments [Control : "no neutralizing layer+vegetation layer" 3 cm, Treatment 1 : "no neutralizing layer+vegetation layer" 5 cm, Treatment 2 : "no neutralizing layer+vegetation layer" 7 cm, Treatment 3 :"neutralizing layer (cement 3 %)+ vegetation layer (cement 1 %)" 3 cm, Treatment 4 : "neutralizing layer (cement 3 %)+vegetation layer (cement 1 %)" 5 cm, Treatment 5 : "neutralizing layer (cement 3 %)+vegetation layer (cement 1 %)" 7 cm, Treatment 6 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$] +vegetation layer" 3 cm, Treatment 7 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$]+vegetation layer" 5 cm, Treatment 8 : "neutralizing layer [$(Ca{\cdot}Mg)CO_3$]+vegetation layer" 7 cm] to find out the vegetation effects according to neutralizing layer types of the acid drainage slope. There were no significant differences observed in soil hardness and soil moisture content of neutralizing layer type while highly difference of moisture content was observed according to the neutralizing and vegetation layer thickness. As for soil acidity, strong acid was shown in the control, treatment 1 and treatment 2. Neutralizing effects were outstanding in treatments of 3, 4, 5 (cement treatment group), 6, 7 and 8 (limestone treatment group). Concerning plants growth characteristics, surface coverage rates, number of germinating woody plants, plant height, and plant root status, there were excellent effects observed in the experimental groups mixed with cement (treatments 3, 4 and 5) and limestone (treatments 6, 7 and 8). At the initial stage, however, plant roots were negatively affected in cement layer treatments of 3, 4 and 5. However, no difference was shown in each layer thickness on the acid drainage slope whereas 3~5 cm thickness neutralizing layer was appropriate in consideration of economic feasibility.

A Study on the Possibility of Recycling Coir Organic Substrates for using Strawberry Hydroponics Media (토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구)

  • Lee, Gyu-Bin;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kim, Jooh-Yup;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as $4.58dS{\cdot}m^{-1}$. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was $1.48dS{\cdot}m^{-1}$. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.

Quality Changes as Affected by Storage Temperature and Polyamide Film Packaging in Paprika (Capsicum annuum L.) (파프리카 저장 온도 변화와 폴리아미드 필름 포장 적용에 따른 품질 변화)

  • Erdene, Byambaa Bayar;Lee, Jung-Soo;Park, Me Hea;Choi, Ji Won;Eum, Hyang Lan;Malka, Siva Kumar;Yun, Yeoeun;Kim, Chae-Hee;Kim, Ho Cheol;Lee, Jinwook;Park, Ki Young;Bae, Jong Hyang;Lee, YounSuk;Jeong, Cheon Soon;Park, Jong-Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.115-125
    • /
    • 2022
  • The purpose of this study was to examine the effect of packaging on quality maintenance of paprika (Capsicum annuum L. cv. Nagano RZ) stored at three different temperatures. In Korea, paprika is stored and distributed under ambient conditions. To ensure the freshness maintenance, determining optimal storage temperature is necessary. Paprika were unpacked (control) or packed with polyamide film and stored at 5℃, 10℃ and 20℃ for 35 days. Quality characteristics such as weight loss and appearance were examined. Paprika packed with polyamide film showed less quality changes compared to unpacked paprika under all the storage temperatures. The commercial properties tended to decrease rapidly during storage at 20℃ regardless of packing. The degree of weight loss was significantly lower in packed paprika compared to unpacked paprika. It was found that soluble solids, pigments, hardness, etc. were complexly affected by storage temperature and film packaging. For paprika, the storage temperature of 5℃ or 10℃ was effective in maintaining freshness; paprika packed in polyamide film packing maintained greater freshness than unpacked paprika. Our results showed that, packaging is required to preserve the freshness and to improve the marketability of paprika in the domestic market. It seems that it is necessary to continuously search for an effective packaging method.

Effects of Long Term Fertilizations on Growth, Yield and Grain Development of Rice (비료의 장기연용이 벼의 생육ㆍ수량 및 미립발달에 미치는 영향)

  • Han, Hee-Suk;Lee, Moon-Hee;Shim, Jai-Sung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.1
    • /
    • pp.41-51
    • /
    • 1991
  • This study was conducted to determine the effect of 20 years long term fertilizations on the physical and chemical properties of paddy soil and the growth, yield, yield components and grain development of rice. Non-fertilized, PK, NK, NP, NPK, NPK + compost, NPK+straw and NPK+lime have been applied since 1968 after surface paddy soil was removed. NPK+compost and NPK+straw applications increased the content of organic matter, available P and CEC, and lime increased soil acidity and SiO$_2$ content. While chemical contents in non-fertilized treatment were low as compared with other treatments. Soil porosity was higher in NPK+straw (51.4%) and NPK+lime(53.1%) than in NPK application (49.8%). Soil hardness was highest in the NPK application and was lowest in the NPK + lime. Continuous application of straw with NPK markedly increased the content of aggregate with over 1mm(19.6%) as compared with NPK application (7.1%). Plant height, tiller number, root number, leaf area index and total dry weight were higher in the applications of compost, straw and lime with NPK than in any other treatments. Brown rice yield in non-fertilized, PK and NP applications was decreased 45, 55, 15 and 5% of that in NPK application, respectively, while application of compost, straw and lime with NPK increased the yield by 11, 14 and 4%, respectively, during 20 years. The number of differentiated rachis branchs in the application of compost, straw and lime was 17 to 21 and that in the other application was 13 to 15, whereas the degenerated rachis branchs was low in the application of compost, straw and lime with NPK. The applications having higher level of perfect rice grain such as non-fertilized, NPK+compost, NPK+straw and NPK+lime had high grain weight and had low level of white core rice, white belly rice. The white core and belly rice was highest in the NP application and notched belly rice kernel was markedly increased in NK and NP applications. The period of grain filling was 30 DAH at NP and NPK applications, 35 DAH at NK and NPK+lime, 40DAH at NPK+compost and NPK+ straw, and 45DAH at non-fertilized, respectively.

  • PDF