• Title/Summary/Keyword: hardened tool steel

Search Result 71, Processing Time 0.03 seconds

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

A Study on the Coated Characteristics of Ceramic Tools (코팅공구의 절삭성능에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.96-101
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc.. Ceramic toolsare likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ther2efore ceramic tools are suitable for continuous cut in turning not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

  • PDF

A Study for Cutting Resistance of TiN Coated Tools (TiN 코팅 공구의 절삭저항에 관한 연구)

  • 김광래
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.87-95
    • /
    • 2000
  • By using AIP(Arc Ion Plating) of a physical vapor deposition for the first time in Korea a ceramic tool whose surface is coated single layeredly with TiN is developed. In addition cutting resistance appearing in the process of finishing cut of hardened carbon tool steel STC3 is studied. The principal and radial components of cutting resistance in those cutting conditions appear to be the same or similar and the feed component is relatively small. The feed component is found to be in proportion to cutting width and the radial component in proportion to cutting thickness. Owing to coating the cutting resistance of a TiN coated ceramic tool increas-es compared with that of a general ceramic tool.

  • PDF

On the Experimental Study about Cutting Resistance of TiN Coated Ceramic Tools (TiN 피복 세라믹공구의 절삭저항에 관한 실험적 연구)

  • 이명재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.307-314
    • /
    • 1999
  • By using AIP(Arc Ion Plating) of a physical vapor deposition for the first time in Korea a ceramic tool whose surface is coated single layeredly with TiN is developed. In addition, cutting resistance appearing in the process of finishing cut of hardened carbon tool steel, STC3 is studied. The principal and radial components of cutting resistance in those cutting conditions appear to be the same or similar, and the feed component is relatively small. The feed component is found to be in proportion to cutting width, and the radial component in proportion to cutting thickness. Owing to coating the cutting resistance of a TiN coated ceramic tool increases compared with that of a general ceramic tool.

  • PDF

Surface Heat treatment of Die material by means of CW Nd:YAG Laser (CW Nd:YAG레이저를 이용한 금형 재료의 표면열처리)

  • Yoo Young-Tae;Shin Ho-Jun;Jang Woo-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.67-74
    • /
    • 2004
  • Laser heat treatment is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_2$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching action to occur and the formation of matrensitic structure. In this investigation, the microstructrual features occurring in Nd:YAG laser hardening SM45C and $STD_11$ steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimisation of the processing parameters for maximum hardened depth of SM45C and $STD_11$ steel specimens of 10mm thickness by using CW:YAG laser.

Development of High Strength Steel Body by Hot Stamping (핫스탬핑에 의한 고강도 차체 부품 개발)

  • Lee, D.H.;Kim, T.J.;Lim, J.D.;Lim, H.J.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.304-309
    • /
    • 2009
  • Quenchable boron steel is a new type of high strength steel to reduce the weight of automobiles and maintain the safety conditions. Quenchable blanks can be hot-stamped and hardened in a water-cooled tool to achieve high strength. In this paper, new alloy for hot stamping is designed based on requirement of mechanical properties and two types of surface coating are investigated in viewpoints of oxidization and exfoliation. An automotive part of center pillar is manufactured by hot-stamping using Al-Si coated sheet. The performance of developed part is compared by static compression test and side impact crash test.

Cutting state parameter variations caused by tool wear in hard turning (중절삭시 공구마모에 의한 절삭상태변수의 변화)

  • Jang, Dong-Young;Hsiao, Ya-Tsun;Kim, Il-Hae;Kim, Woo-Jung;Han, Dong-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.653-657
    • /
    • 2000
  • Machining performance in hard turning of hardened AISI M2 steel has been studied. Ceramic tools were used in the cutting tests without coolants and workpiece was prepared by heat treatment to increase its hardness up to Rc 60. Cutting state parameters such as cutting forces, temperature, and tool wear were measured in the experiments and effects of tool wear on cutting states were investigated.

  • PDF

A Study on the Micro-machining Technique for Fabrication of Micro Grooves (미세 홈 형성을 위한 마이크로 가공기술에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.918-921
    • /
    • 2000
  • Micro-machining, one of the non-traditional machining techniques, can achieve a wanted shape of the surface using metal dissolution with electrochemical reaction and can be applied to the metal such as high tension, heat resistance and hardened steel. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and the current is applied. Traditional machining has been used in the industries such as cutting, deburring, drilling and shaping. The aim of this work is to develop Micro-machining techniques for micro shape by establishing appropriate machining parameters of micro-machining

  • PDF

The Change of Sliding wear properties of Carbon Steel against several hardened steels (미끄럼 접촉을 하는 탄소강의 경도차 조합에 따른 마모특성변화 연구)

  • Lee Han Yeong;Kim Geun Yeong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.85-90
    • /
    • 2003
  • Although wear resistance of material improves with increasing its hardness, it is known that the wear resistance of steel is varied with hardness of counter material. In this context, wear properties of steel must be depended on the difference of hardness between the testpiece and the counter material. In this study, using the pin-on-disc type wear machine, annealed carbon steels were tested against ahoy tool steels with various levels of hardness. Then the changes of wear properties of carbon steel according to the hardness of counter material were investigated and the morphology of worn surface after test were evaluated. The results indicate that if there are no remarkable difference of hardness between them, wear resistance of carbon steel in running-in wear decreases with increasing the hardness of counter material. However, its wear properties at the range of high sliding speed have no relation with hardness of counter material. It is clear that wear properties is influenced by the formation of oxide of steel on their worn surface during wear.

  • PDF

A Study on Wear Mechanism of CBN Ball Endmills (CBN 볼엔드밀의 마모메카니즘에 관한 연구)

  • Park, S.W.;Lee, K.W.;Lee, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.121-126
    • /
    • 1997
  • The use of CBN tool material has been greatly increased because of the superior metal cutting performance for the machining of hardened steel. This paper presents some experimental results on the ball endmiling of harened steels. Three different hardnesses of STD11 workpieces were machined using CBN ball endimills, and the machining characteristics including cutting forces tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is caused by the difference of microstructure of each workpieces.

  • PDF