• Title/Summary/Keyword: hardened target

Search Result 28, Processing Time 0.022 seconds

Carburizing Behavior of AISI 4115 Steel with a Flow Rate of Acetylene and Specimen Location in an 1 ton-class Mass Production-type Vacuum Carburizing Furnace (1 톤급 양산형 진공 침탄로에서 아세틸렌 유량과 로 내 위치에 따른 AISI 4115 강의 침탄 거동)

  • Kwon, Gi-hoon;Moon, Kyoungil;Park, Hyunjun;Lee, Young-Kook;Jung, Minsu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.272-280
    • /
    • 2021
  • The influence of acetylene flow rates on the carburizing behavior of an AISI 4115 steel in 1 ton-class mass production-type vacuum carburizing furnace has been studied through microstructure, carbon concentration, hardness analyses. The AISI 4115 steels were carburized with various flow rates (20, 32.7, 60 l/min) and locations in the furnace (top, center, bottom) at 950℃. The acetylene flow rate played an important role in controlling the carburizing properties of carburized samples, such as effective case depth and uniformity carburizing according to location in the furnace. At an acetylene flow rate of 20 l/min, the carburized samples had a shallow average hardened layer (0.645 mm) compared to the target hardening depth (1 mm) due to low carbon flux and spatial uniformity of carburization (17.8%) in the furnace. At a flow rate of 60 l/min, the carburized samples showed an average hardened layer (1.449 mm) deeper than the target hardening depth and had the spatial uniformity of carburization (98.8%). In particular, at a flow rate of 32.7 l/min, the carburized samples had an average hardened layer (1.13 mm) close to the target hardening depth and had the highest carburizing uniformity (99.1%). As a result, an appropriate flow rate of 32.7 l/min was derived to satisfy the target hardening depth and to have spatial uniform hardened layer in the furnace.

Framework of Weapon Effects Calculator for Hardened Targets (견고표적 무기효과 산출 알고리즘에 관한 연구)

  • Park, Jong Yil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.340-347
    • /
    • 2013
  • Weapon effect is a key issue throughout the life cycle of weapon systems. Only when weapon effect is considered properly, Effects Based Operation(EBO), Effects Based Acquisition(EBA), and Effects Based Development(EBD) could be possible. Because the transfer of weapon effect technologies is restricted in most foreign counties, independent development is necessary. In this paper, framework of weapon effects calculator for hardened targets is proposed to meet the own development needs. It is designed focusing on running time, validation and expandibility by adoption of modular architecture. Required technologies for each module are identified, and unclassified ones are summarized.

Framework of Weapon Effectiveness Tool for Hardened Targets (지상 및 지하 구조물 무기효과도 SW Framework)

  • Park, Jong Yil;Lee, Sung Uk;Kim, Ho Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.551-555
    • /
    • 2014
  • In this paper, framework of weapon effects calculator for hardened targets is presented. Fast running time, validation and easy expandibility are required for weaponeering tools, and these requirements were met by using of physics-based fast-running models or semi-empirical equations for damage prediction and penetrations, and modular architecture. Key concepts and outputs, required functions and corresponding use cases were presented.

Characteristics of Mass Reduction Rate of Cement Paste Hardened to High Temperature Conditions by TGA (TGA를 이용한 고온 조건에 노출된 시멘트 페이스트 경화체의 질량감소율 특성)

  • Ji, Woo-Ram;Shin, Ki-Don;Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.169-170
    • /
    • 2018
  • In this study, TGA analysis of hardened cement paste with fire damage was performed. The mass reduction rate of 600 ℃ specimens was about 22 ~ 25%, and the sample of 800 ℃ showed the mass loss rate of 9 ~ 13%. As the target temperature and hold time increased, the mass reduction rate decreased. As the depth increased, the mass reduction rate decreased.

  • PDF

A Study on the Chemical Admixture According to Target Slump Value by Crushed Sand Replacement Rate (부순모래 치환율별 목표슬럼프 값 고정에 따른 화학혼화제의 특성에 관한 연구)

  • Ryu, Hyun-Gi;Cho, Myeong-Ken
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.87-93
    • /
    • 2008
  • With an increased use of alternative aggregate due to exhaustion of quality aggregate resources, the amount of used crushed aggregates have been increased and as a result, development of admixture materials has also been improved and its amount of use is increasing from day to day in order to secure quality in concrete. Accordingly, the purpose of this study is to make concrete of good quality by using chemical admixture developed in this study by replacement rate of fine aggregate. At first, susceptibility, compressive strength ratio and length change ratio in both fresh and hardened concrete were evaluated according to corresponding regulation. As for high performance related regulation, APC NO.3 and PC series were going to rule, and as for AE agent regulation, replacement ratio of fine aggregate of high performance chemical admixture was 10:0 and other chemical admixture met quality regulation for AE agent.

A Study on the Survivability of the General Purpose Warhead by Counter Mass Gun Test & Analysis (Counter Mass Gun을 이용한 표준탄의 생존성 연구)

  • 임완권;김성식;김호수;박관진;이정환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • Survivability of the general purpose warhead during the target impact was studied. We first simulated the penetration phenomena and temporarily defined the survivability of the warhead at the impact situation. Next we launched the warhead projectiles by using Counter Mass Gun(CMG) system against the simulated specific steel target. The recovered warheads were carefully investigated and the penetration behaviors were analyzed. As a result the warhead can be hardened efficiently to enhance the survivability with the help of CMG test & analysis.

Comparative study of microstructure and mechanical properties for films with various deposition rate by magnetron sputtering

  • Nam, Kyung H.;Jung, Yun M.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.12-12
    • /
    • 2000
  • This paper investigated the effect of the film deposition rate for $CrN_x$ microstructure and mechanical properties. For these purpose, pure Cr an stoichiometric CrN films were deposited with various target power density on Si hardened M2 tool steel. The variation of ni trogen concentration in $CrN_x$ f analyzed by AES and deposition rate was calculated by measuring of thickness using ${\alpha}-step$ profilometer. The microstructure was analyzed by X-Ray Diffract and Scanning Electron Microscopy(SEM), and mechanical properties were evalua residual stress, microhardness and adhesion tests. Deposition rate of Cr and CrN increased as an almost linear function of target power density from $0.25\mu\textrm{m}/min$ and $0.15\mu\textrm{m}/min$ to $0.43\mu\textrm{m}/min$. Residual stresses of Cr and CrN films were from tensi Ie to compressive stress with an increase of deposi tion rate a compressive stresses were increased as more augmentation of deposition r maximum hardness value of $2300kg/\textrm{mm}^2$ and the best adhesion strength correspond HF 1 were obtained for CrN film synthesized at the highest target densitY($13.2W/\textrm{mm}^2$) owing to high residual compressive stress and increasing mobility.

  • PDF

Field Construction Applying the Insulating Method of Moderate-Cold Weather Concreting Using Double Bubble Sheets (2중 버블시트를 이용한 한랭기 콘크리트의 단열양생공법 현장적용)

  • Kim, Jong;Kim, Jong-Back;Jeon, Chung-Keun;Shin, Dong-An;Oh, Seon-Gyo;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.29-32
    • /
    • 2006
  • Experimental test results of field construction, Cheongju University Educational Liberal Art Building, applying the insulating curing method on slab concrete showed that the quality of concrete in fresh and hardened state satisfied all target values. Temperature history of slab concrete in A and B area secured more than $7.8{\sim}9.2^{\circ}C$ higher than outside atmosphere. After completing certain curing period of time on the surface of the structure, crack occurrence was not found. It is concluded that the preventing vaporization of moisture by the insulating curing method reduces plastic and drying shrinkage as welt as improves durability.

  • PDF

Performance investigation of palm kernel shell ash in high strength concrete production

  • Mosaberpanah, Mohammad A.;Amran, Y.H. Mugahed;Akoush, Abdulrahman
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.577-585
    • /
    • 2020
  • By the increasing amount of waste materials, it eventually dumped into the environment and covering a larger area of the landfill which cause several environmental pollution problems. The utilization of Palm Kernal Shell Ash (PKSA) in concrete might bring a great benefit in addressing both environmental and economic issues. This article investigates the effect of PKSA as a partial cement replacement of High Strength Concrete (HSC). Several concrete mixtures were prepared with different PKSA of 0%, 10%, 20%, and 30% replaced by the cement mass. This procedure was replicated twice for the two different target mean strengths of 40 MPa and 50 MPa. The mixtures were prepared to test different fresh and hardened properties of HSC including slump test, the compressive strength of 3, 7, 14, 28, and 90 days, flexural strength of 28-days, drying shrinkage, density measurement, and sorptivity. It was observed 10% PKSA replacement as optimum percentage which reduced the drying shrinkage, sorptivity, and density and improved the late-age compressive strength of concrete.

The Fundamental Properties of Foamed Concrete as the Eco-friendly Ground Repair System for Cast in Site Using the CSA (CSA를 사용한 친환경 지반보수용 현장 기포콘크리트의 기초 특성 검토)

  • Woo, Yang-Yi;Park, Keun-Bae;Ma, Young;Song, Hun-Young
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study aimed to develop a foam concrete material for a ground repair system that has low strength and low fluidity by using an eco-friendly binder, which substitutes industrial by-products for more than 90% of cement. Basic properties were evaluated after substituting a small amount of calcium sulfo aluminate (CSA) for the binder to improve the sinking depth rate and volume change, commonly found when it had a large amount of industrial by-products. The substitution rates of CSA for the eco-friendly binder used for the foam concrete were 2.5, 5, and 10%. Fresh properties, hardened properties, pore structure, and hydrates were analyzed. Experimental results showed that using only 2.5% of CSA could improve the deep sinking depth which occurred when using an eco-friendly binder. As a result, the weight difference between the upper, middle, and lower parts of cast specimens was improved even after being hardened. The addition of CSA also contributed to the formation of small, uniformly sized closed pores and improved initial strength. However, when the proportion of CSA increased, the long-term strength decreased. However, it satisfied the target strength when 5% or less of CSA was used. The results of this study revealed that it was possible to manufacture foam concrete with low strength and high fluidity for repairing ground satisfying target qualities by adding 2.5% of CSA to the eco-friendly binder containing a large amount of industrial by-products.