• Title/Summary/Keyword: haptic interface

Search Result 160, Processing Time 0.023 seconds

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Jeong, Won-Tae;Kim, Young-Dong;Shin, Suck-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.67-71
    • /
    • 2002
  • In this paper, we propose a new deformable model based on non-linear elasticity, anisotropic behavior and the finite element method and developed the high-speed controller for haptic control. The proposed controller is based on the PCI/FPGA technology, which can calculate the real position and transmit the force data to device rapidly, The haptic system is composed of 6DOF force display device, high-speed controller and HIR library for 3D graphic deformation algorithm & haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. we demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we designed simulation program of force-reflecting, As the result of the experiment, we found that the controller has much higher resolution than some other controllers.

  • PDF

An Investigation of Haptic Interaction in Online Negotiation between different native language people

  • Chen, Meng;Okada, Shogo;Nitta, Katsumi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Due to the development of internet technology, the online business trade becomes an active area. Online negotiation supporting systems have been developing very actively in recent years to meet the growing needs. We have been studying on the effect that the haptic device brings about in interaction through online negotiation between two parties. In order to meet the online negotiation's requirements, the developed interface should be able to protect user's anonymity, convey user's emotion and make the scene alive.In this study, we adopt haptic interaction as a means of conveying emotion in an online negotiation between Japanese and Chinese people. In this study, our goal is to investigate the effectiveness of haptic interaction in communications between Chinese and Japanese users and analyze the characteristis in operation the haptic device. We conducted online negotiation experiments with and without haptic interaction . The comparison experiments results show that the haptic feedback can help to convey the emotion and the sense of presence. The Chinese subjects' feedback for the questionaire concerning the emotional communication and the sense of presence varies slightly compared to the Japanese subjects. We also found when using the haptic device, the force feedback can influence subject's feelings.There is little significant difference between the advanced and the medium subjects in negotiation dialogues and the haptic device's operation, the beginner subjects are slightly at a disadvantage.

A Patellar Surgery Haptic Simulator for Veterinary Training (수의학 훈련을 위한 슬개골 수술 햅틱 시뮬레이터)

  • Lee, Jun;Eom, KiDong;Seo, Anna
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Patella surgery of small animal is an important veterinary surgery that the veterinarian should saw and drill the dislocated patella in order to fix the corrected position. However, the animal protection laws restrict the veterinarian students' chances for the practice and training of the patella surgery. This paper proposed a haptic based patella surgery simulator for veterinarian students. We modelled force feedback methods in order to provide best similar haptic feedbacks to the real drilling feedbacks in the patella surgery. The proposed patella drilling simulator provides haptic interface as a drill and a workbench in order to provide best surgery experiences. We conducted the performance evaluations in order to prove usability of the proposed patella surgery interface.

Development of Virtual Science Experience Space(VSES) using Haptic Device (역감 제시 장치를 이용한 가상 과학 체험 공간 개발)

  • 김호정;류제하
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1044-1053
    • /
    • 2003
  • A virtual science experience space(VSES) using virtual reality technology including haptic device is proposed to overcome limits which the existing science education has and to improve the effect of it. Four example scientific worlds such as Micro World, Friction World, Electromechanical World and Macro World are demonstrated by the developed VSES. Van der Waals forces in Micro World and Stick-Slip friction in Friction World, the principle of induction motor and power generator in Electromechanical World and Coriolis acceleration that is brought about by relative motion on the rotating coordinate are modeled mathematically based on physical principles. Emulation methods for haptic interface are suggested. The proposed VSES consists of haptic device, HMD or Crystal Eyes and a digital computer with stereoscopic graphics and GUI. The proposed system is believed to increase the realism and immersion for user.

Tension Based 7 DOEs Force Feedback Device: SPIDAR-G

  • Kim, Seahak;Yasuharu Koike;Makoto Sato
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • In this paper, we intend to demonstrate a new intuitive force-feedback device for advanced VR applications. Force feed-back for the device is tension based and is characterized by 7 degrees of freedom (DOF); 3 DOF for translation, 3 DOF for rotation, and 1 DOF for grasp). The SPIDAR-G (Space Interface Device for Artificial Reality with Grip) will allow users to interact with virtual objects naturally by manipulating two hemispherical grips located in the center of the device frame. We will show how to connect the strings between each vertex of grip and each extremity of the frame in order to achieve force feedback. In addition, methodologies will be discussed for calculating translation, orientation and grasp using the length of 8 strings connected to the motors and encoders on the frame. The SPIDAR-G exhibits smooth force feedback, minimized inertia, no backlash, scalability and safety. Such features are attributed to strategic string arrangement and control that results in stable haptic rendering. The design and control of the SPIDAR-G will be described in detail and the Space Graphic User Interface system based on the proposed SPIDAR-G system will be demonstrated. Experimental results validate the feasibility of the proposed device and reveal its application to virtual reality.

Colonoscopy Training Simulator

  • Yi, S.Y.;Woo, H.S.;Kwon, J.Y.;Joo, J.K.;Lee, D.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.57-61
    • /
    • 2005
  • This paper presents a new colonoscopy training simulator that includes a specialized haptic device and graphics algorithms to transfer haptic sensation through a long and flexible tube, and manage large number of polygons. The developed haptic device makes the colonoscope tube move along the two guiding rods in the translational direction. The torque of the roll motion is transferred by a timing belt and pulleys. A special guide is developed, which allows the force and torque from the motors to be transmitted to the user without loss. The haptic device is evaluated by physicians. One of the important skills of the colonoscopy, jiggling is incorporated for the first time by the developed sensor mechanism using photo-sensors. A colonoscope handle that shares the look, feel, and functions with the actual colonoscope, is developed with the necessary electronics inside. The number of polygons is reduced by an edge-collapse algorithm for real-time simulation. The algorithms to import CT data, to segment the colon image, to extract centerline of the colon, and to construct the colon surface, are integrated into a Colon Modeling Kit system that performs all these processes in real-time.

  • PDF

Basic Pattern Development of Haptic Gloves from 3D Data (3차원 데이터를 활용한 장갑형 햅틱(Haptic)용 기본 패턴 개발)

  • Kim, So-Young;Lee, Ye-Jin;Park, Hye-Jun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.8
    • /
    • pp.1226-1232
    • /
    • 2008
  • Tight fitting glove pattern is necessary to convey oscillation to the skin from the sensors attached on the hands as found in the haptic device. However, it has been difficult to provide customized glove pattern for haptic device so far. The objective of the paper is to develop a 2D pattern that fit tightly to hands by adopting the recent 3D technology to the clothing science. In this study, the user graphic interface application software(2C-AN) for the semi-automatic garment pattern generation has been utilized to develop the methodology of construct tight-fitting glove pattern for the hand in natural position. A basic pattern was developed directly from the 3D images of hand and the verification of the proposed pattern was also provided.

Collision detection algorithm by using mesh grouping (메쉬 그룹화를 이용한 충돌 검출 알고리즘)

  • Park, Jong-Seop;Jang, Tae-Jeong
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.199-204
    • /
    • 2018
  • In this paper, we propose a fast collision detection method for interacting with objects in virtual space. First, in the mesh grouping step, the entire space is divided into small spaces of a predetermined size, and the positions and sizes of the smallest basic stereoscopic shapes (cube or sphere) including all of the meshes belonging to each small space are determined. In the collision detection step, it is checked whether a haptic interface point (HIP) is included in a three-dimensional figure representing a group. When a collision with a specific three-dimensional figure is confirmed, searching is performed only for the meshes in the group to find a mesh on which a possible real collision with HIP occurred. The effectiveness of the proposed algorithm is verified by measuring and comparing the computation time of the proposed method with and without the proposed method.

Application of Three-dimensional Scanning, Haptic Modeling, and Printing Technologies for Restoring Damaged Artifacts

  • Jo, Young Hoon;Hong, Seonghyuk
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.71-80
    • /
    • 2019
  • This study examined the applicability of digital technologies based on three-dimensional(3D) scanning, modeling, and printing to the restoration of damaged artifacts. First, 3D close-range scanning was utilized to make a high-resolution polygon mesh model of a roof-end tile with a missing part, and a 3D virtual restoration of the missing part was conducted using a haptic interface. Furthermore, the virtual restoration model was printed out with a 3D printer using the material extrusion method and a PLA filament. Then, the additive structure of the printed output with a scanning electron microscope was observed and its shape accuracy was analyzed through 3D deviation analysis. It was discovered that the 3D printing output of the missing part has high dimensional accuracy and layer thickness, thus fitting extremely well with the fracture surface of the original roof-end tile. The convergence of digital virtual restoration based on 3D scanning and 3D printing technology has helped in minimizing contact with the artifact and broadening the choice of restoration materials significantly. In the future, if the efficiency of the virtual restoration modeling process is improved and the material stability of the printed output for the purpose of restoration is sufficiently verified, the usability of 3D digital technologies in cultural heritage restoration will increase.