• Title/Summary/Keyword: hankel transform

Search Result 57, Processing Time 0.021 seconds

An analytical solution for finitely long hollow cylinder subjected to torsional impact

  • Wang, X.;Wang, X.Y.;Hao, W.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.281-295
    • /
    • 2005
  • An analytical method is presented to solve the elastodynamic problem of finitely long hollow cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution, it can be found that two kinds of results obtained by means of two different methods agree well. Therefore, it is further concluded that the analytical method and computing process presented in the paper are effective and accurate.

Earth Reflection Effect Analysis in the Environment of Line Source Induction (전력선 유도 환경에서의 지면 반사계 영향 분석)

  • Lee, Sangmu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.26-32
    • /
    • 2013
  • The earth reflection effect on the induced voltage by line source such as power line occurring induction inteference is analyzed to scrutinize how much it would reduce the induced voltage. Using hankel transformation including bessel function, directly calculation formulae for extracting a refelction coefficient is a most important technical application in this paper since the reflection coefficient on the earth cannot be deduced by a general coefficient calculation formulae according to a plain wave. The electric field is utilized to transform the electromagnetic field into an induced voltage. The composed efficiency to a source induction voltage by an earth reflection is about a range of 60~70% for the axis constellation of each object like observation point, source position and other material parameters.

A Study on the Depth Dependent Characteristics of Earthquake Ground Motions in a Layered Ground Medium Using Point Source Models (점진원모델을 사용한 층상지반에서의 깊이에 따른 지반운동 특성 변화연구)

  • Koh, Hyun Moo;Kim, Jae Kwan;Kwon, Ki Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.453-462
    • /
    • 1994
  • Variation of seismic wave field in a multi-layered attenuating elastic half space is studied by the propagator matrix method and point source models of which fault-slip functions are defined as ramp functions. In this paper, the earth is modeled as being composed of horizontally stratified layers, with uniform material properties for each layer. The partial differential equations for the seismic motion in each layer are solved using a Fourier Hankel transform approach. Time histories and frequency contents of accelerations and displacements due to a vertical dip-slip and strike-slip point source located in the underlain half space are calculated at the layer interfaces using the developed programs and their characteristics are represented.

  • PDF

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

MATHEMATICAL MODELLING AND ITS SIMULATION OF A QUASI-STATIC THERMOELASTIC PROBLEM IN A SEMI-INFINITE HOLLOW CIRCULAR DISK DUE TO INTERNAL HEAT GENERATION

  • Gaikwad, Kishor R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2015
  • The present paper deals with the determination of temperature, displacement and thermal stresses in a semi-infinite hollow circular disk due to internal heat generation within it. Initially the disk is kept at arbitrary temperature F(r, z). For times t > 0 heat is generated within the circular disk at a rate of g(r, z, t) $Btu/hr.ft^3$. The heat flux is applied on the inner circular boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0) is kept at temperature $Q_3(r,t)$ and the upper surface ($Z={\infty}$) is kept at zero temperature. Hollow circular disk extends in the z-direction from z = 0 to infinity. The governing heat conduction equation has been solved by using finite Hankel transform and the generalized finite Fourier transform. As a special case mathematical model is constructed for different metallic disk have been considered. The results are obtained in series form in terms of Bessel's functions. These have been computed numerically and illustrated graphically.

THE INTEGRAL EXPRESSION INVOLVING THE FAMILY OF LAGUERRE POLYNOMIALS AND BESSEL FUNCTION

  • Shukla, Ajay Kumar;Salehbhai, Ibrahim Abubaker
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.721-732
    • /
    • 2012
  • The principal aim of the paper is to investigate new integral expression $${\int}_0^{\infty}x^{s+1}e^{-{\sigma}x^2}L_m^{(\gamma,\delta)}\;({\zeta};{\sigma}x^2)\;L_n^{(\alpha,\beta)}\;({\xi};{\sigma}x^2)\;J_s\;(xy)\;dx$$, where $y$ is a positive real number; $\sigma$, $\zeta$ and $\xi$ are complex numbers with positive real parts; $s$, $\alpha$, $\beta$, $\gamma$ and $\delta$ are complex numbers whose real parts are greater than -1; $J_n(x)$ is Bessel function and $L_n^{(\alpha,\beta)}$ (${\gamma};x$) is generalized Laguerre polynomials. Some integral formulas have been obtained. The Maple implementation has also been examined.

Analysis of Wide Band Annular Ring Microstrip Patch Antenna (광대역 Annular Ring 마이크로스트립 패치 안테나의 해석)

  • Seo, Chul-Hun;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • This paper presents the analysis of the mode characteristics of an annular ring microstrip patch antenna for circular polarization with attachment mode using method of moments in the spectral domain. For a probe excitation, the input impedance are obtained by using the single mode approximation for both the $TM_{11}$ and $TM_{12}$ modes and compared with those by Vector Hankel Transform. While the $TM_{11}$ mode has a high Q, it is a poor radiating mode; the $TM_{12}$ mode is more suitable for antenna applications. It is also shown that the bandwidth of the $TM_{12}$ mode is wider than that of the $TM_{11}$ mode in terms of axial ratio for circular polarizatio

  • PDF

Impedance and Mutual Coupling Characteristics of a Probe-Fed Stacked Circular Microstrip Two-Element Array Antenna (Probe로 급전되는 적층형 원형 마이크로스트립 2소자 배열 안테나의 임피던스 및 상호 결합 특성)

  • 이면주;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.11
    • /
    • pp.1767-1773
    • /
    • 1993
  • In this paper, the coupling characteristics as well as the self and the mutual Impedance of a two-element probe-fed stacked circular microstrip array antennas are presented. A full wave analysis for the structure is performed In the spectral domain using the vector Hankel transform(VHT). Also, we presented measured results for the impedance, the coupling characteristics of the antenna and the variation of the coupling with the distance between the two elements. Finally, the calculated and measured results are shown to agree well wlth each other through comparisons.

  • PDF

Modeling of a Continuous-Time System with Time-delay

  • Park, Jong-Jin;Choi, Guy-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Control Theory for continuous-time system has been well developed. Due to the development of computer technology, digital control scheme are employed in many areas. When delays are in control systems, it is hard to control the system efficiently. Delays by controller-to-actuator and sensor-to-controller deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for control systems with multiple state, input and output delays and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative examples are given to demonstrate the effectiveness of the developed method.

Local stress field for torsion of a penny-shaped crack in a transversely isotropic functionally graded strip

  • Feng, W.J.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.759-768
    • /
    • 2004
  • The torsion of a penny-shaped crack in a transversely isotropic strip is investigated in this paper. The shear moduli are functionally graded in such a way that the mathematics is tractable. Hankel transform is used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by taking the asymptotic behavior of Bessel function into account. The effects of material property parameters and geometry criterion on the stress intensity factor are investigated. Numerical results show that increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface can suppress crack initiation and growth, and that the stress intensity factor varies little with the increasing of the strip's height.