딥 러닝 기술의 등장으로 여러 나라의 필기체 인식은 높은 정확도 (중국어 필기체 인식은 97.2%, 일본어 필기체 인식은 99.53%)를 보인다. 하지만 한글 필기체는 한글의 특성으로 유사글자가 많은데 비해 문자의 데이터 수는 적어 글자 인식에 어려움이 있다. 하이브리드 러닝을 통한 한글 필기체 인식에서는 lenet을 기반으로 하여 낮은 레이어를 가진 모델을 사용하여 한글 필기체 데이터베이스 PE92에서 96.34%의 정확도를 보여주었다. 본 논문에서는 하이브리드 러닝에서 사용하였던 데이터 확장 기법(data augmentation)이나 multitasking을 사용하지 않고도 GoogLenet 네트워크를 기본으로 한글 필기체 데이터에 적합한 더 깊고 더 넓은 CNN(Convolution Neural Network) 네트워크를 도입하여 PE92 데이터베이스에서 98.64%의 정확도를 얻었다.
필기체 숫자인식은 일반적으로 높은 인식률과 문맥 독립이 요구되고 있고, 쓰는 사람에 따라서 많은 차이점이 있어서 자유 필기체 숫자는 인식이나 알고리즘작성에 아직도 어려운 문제점이 있다. 본 연구에서는, 필기체 숫자의 특성을 분석하고, 구조적 특징기반 자유 필기체 숫자인식 알고리즘을 새롭게 제안한다. 주어진 필기 숫자에 대하여, 끝점과 분기점, 수평선과 함께 숫자의 구조적 특징을 연구한다. 이 방법은 확장된 구조적 특징 알고리즘으로 제안되어 강인하며, 그리고 본 연구에서 제안한 구조적 특징에 기반 한 결정 트리(decision tree)는 필기체 숫자 자동인식방법에 구조적으로 기여한다. 본 알고리즘이 다른 방법과 비교하여 인식률과 강인성이 우수함을 실험결과로 보여주었다.
The field of handwriting recognition has been researched for many years. A hybrid classifier has been proven to be able to increase the recognition rate compared with a single classifier. In this paper, we combine support vector machine (SVM) and hidden Markov model (HMM) for offline handwritten numeral recognition. To improve the performance, we extract features adapted for each classifier and propose the modified SVM decision structure. The experimental results show that the proposed method can achieve improved recognition rate for handwritten numeral recognition.
In this paper, we describe a study on the spotting and recognition of handwritten numerals using neural networks. To recognize a handwritten numeral, two kinds of neural network classifiers ate developed. One makes use of the positive samples only, while the other does both of the positive and negative samples. We propose two numeral spotters which discriminate between numerals and non-numerals. Those are also implemented by using neural networks. From the various experimental results, we found that our methods can be successfully applied to spot and recognize handwritten numerals.
In this paper, we propose efficient total recognition system of handwritten and printed numerals for enhancing the classification time. The proposed system consist two step neuroclassifier: Printed numerals classifier and Handwritten numerals classifier. The performance of the propose classifier was tested on 5000 handwritten numerals database of NIST and 100 printed numerals database. In case of handwritten classifier, the overall classification times were 11 second. And in case of proposed system, the overall classification times were reduced by...
본 논문에서는 인쇄체가 대부분을 차지하는 우편물의 우편번호 분류기에 적용하기 위해 인쇄체 및 필기체를 구분하여 인쇄체는 단일 특징과 단일 신경망으로 저차 연산함으로써 빠르게 분류하고 피기체는 복합특징과 클러스터 신경망을 통한 고차연산으로 정확한 분류를 할 수 있는 속도 면에서 효율적인 신경망 분류기를 제안한다. 제안된 분류기는 인쇄체와 필기체를 구분하여 인쇄체를 분류하는 인쇄체 분류기와 여기서 기각된 필기체 숫자를 인식하는 필기체 분류기로 구성된다. 인쇄체 분류기는 망 특징 벡터를 입력의 단일 신경망 인식기로 빠르게 인쇄체 및 정확히 필기된 필기체를 분류하며그 외의 입력패턴에 대해서는 기각한다. 그리고 필기체 분류기는 4방향 특징 및 앞단에서 추출된 망 특징의 복합특징 벡터 입력으로 [11]에서 제안된 클러스터 신경망을 이용하여 정확한 분류를 할수 있도록 구성하였다. 제안된 방법의 성능을 객관적으로 검증하기 위하여 숫자 인식 데이터 베이스로 많이 사용되는 NIST의 필기체 숫자 데이터 베이스 및 자체적으로 구성한 인쇄체 숫자 데이터에 대해 실험하였다. 임의의 NIST 필기체 숫자 데이터 500자와 인쇄체 숫자 데이터 500자에 대해 전처리와 특징추출을 제외한 분류시간측정 결과 제안된 방법을 필기체 분류기에 사용할 경우 인쇄체와 필기체의 비율에 따라 49.1%~65.5% 향상된 속도로 분류함으로써 제안된 방법을 필기체 분류기에 적용함으로써 속도 면에서 효율적임을 나타냈다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제27권2호
/
pp.135-145
/
2023
Recently, as deep learning technology has developed, various deep learning technologies have been introduced in handwritten recognition, greatly contributing to performance improvement. The recognition accuracy of handwritten Hangeul recognition has also improved significantly, but prior research has focused on recognizing 520 Hangul characters or 2,350 Hangul characters using SERI95 data or PE92 data. In the past, most of the expressions were possible with 2,350 Hangul characters, but as globalization progresses and information and communication technology develops, there are many cases where various foreign words need to be expressed in Hangul. In this paper, we propose a model that recognizes and combines the consonants, medial vowels, and final consonants of a Korean syllable using a multi-label classification model, and achieves a high recognition accuracy of 98.38% as a result of learning with the public data of Korean handwritten characters, PE92. In addition, this model learned only 2,350 Hangul characters, but can recognize the characters which is not included in the 2,350 Hangul characters
본 논문은 런 길이를 이용해 필기체 한글 문자에서 자획의 교점을 검출하는 새로운 방법을 제안한다 이를 위해 첫째로, 수평 런 길이와 수직 런 길이를 이용해 필기체 한글 문자의 자획 두께를 구하고, 둘째로, 자획 두께를 이용해 입력 문자의 자소를 수평 성분과 수직 성분으로 분리하며, 마지막으로, 자획의 수평 성분과 수직 성분을 이용해 자획의 교점을 구하는 기술을 제안한다. 수평 성분과 수직 성분 분석은 각도와 관계없이 자획 두께와 런 길이의 변화량만을 이용해 구한다. 자획의 교점은 오프라인 필기체 한글 인식을 위한 요소 기술 중 하나인 자소 분리를 위한 분리점 후보가 되며 분리된 자획은 필기체 한글 인식을 위한 특징을 나타낸다.
최근 서비스 계약 또는 가입에 개인의 고객정보 이용 및 약관 동의를 위한 디지털 자필 서명을 요구하는 것이 일반적이다. 기존 자필 서명을 포함하는 서명시스템들은 각 기업 내에서 자체적으로 서비스 플랫폼 위에 구현되어 활용되고 있기 때문에 플랫폼에 의존적일 뿐만 아니라 디바이스 보유 현황에 따라 서명을 수행할 수 있는 환경이 달라질 수 있는 문제점이 존재한다. 본 논문에서는 이기종간 통합 브라우저 환경에서 jQuery를 기반으로 자필의 2차원 좌표를 직접 저장하는 방식을 이용하여 크로스 브라우징이 가능한 통합 자필 서명 시스템을 설계 및 구현하였다. iOS, Android, PC 등 이기종 환경의 웹 브라우저에서 통합 테스트를 하였고, 모든 자필 서명 기능이 정상적으로 동작함을 확인하였다.
필기체 문자 인식은 온라인 필기체 문자 인식과 오프라인 필기체 문자 인식으로 나누어진다. 온라인 필기체 문자 인식은 타블렛과 같은 펜 기반의 전자식 입력 장치를 이용하여 필기의 순서와 획의 위치와 같은 동적인 필기 정보를 문자의 입력 시 획득할 수 있어 오프라인 필기체 문자 인식에 비해 큰 연구 성과를 이루었다. 그러나 오프라인 필기체 문자 인식은 온라인 필기체 문자 인식에서와 같이 동적인 정보를 입력받을 수 없고, 다양한 필기와 자소의 겹침이 심하며 획 사이의 잡영을 많이 가지고 있어 인식의 전처리 결과에 따라 인식 성능이 크게 달라진다. 본 논문에서는 오프라인 필기체 한글 문자 인식을 위해 문자의 동적인 정보를 포함하는 획을 효과적으로 추출하는 방법을 제안한다. 제안된 방법은 전처리 과정으로 먼저 Watershed 알고리즘을 이용하여 입력된 필기체 문자 영상의 향상 및 이진화를 수행한다. 이진화된 문자부를 변형된 Lu와 Wang의 세선화 알고리즘을 사용하여 세선화를 수행한 후 문자에서의 특징점을 추출하여 세그먼트 화소열을 추출하고, 최대 허용 오차법을 이용하여 벡터화한다. 벡터화의 수행으로 몇 개의 획이 하나의 세그먼트로 묶인 경우, 하나의 세그먼트 화소열은 2 또는 그 이상의 세그먼트 벡터로 분리된다. 추출된 세그먼트 벡터들을 완전한 획으로 재구성하기 위해서 오른손 필기 좌표계 시스템을 이용하여 벡터의 방향적인 성분을 인간의 필기 획의 방향에 알맞게 수정하고, 수정된 세그먼트 벡터의 방향성과 분기 정보를 이용하여 인접한 결합 가능한 세그먼트 벡터를 결합함으로써 문자 인식에 적합한 완전한 획으로 재구성한다. 실험 결과 제안된 방법이 필기체 한글 문자 인식에 적합함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.