• Title/Summary/Keyword: handling robot

Search Result 183, Processing Time 0.031 seconds

Development of Collaborative Dual Manipulator System for Packaging Industrial Coils (산업용 코일 포장을 위한 협동 양팔 로봇 시스템의 개발)

  • Haeseong Lee;Yonghee Lee;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.236-243
    • /
    • 2024
  • This paper introduces a dual manipulator system designed to automate the packaging process of industrial coils, which exhibit higher variability than other structured industrial fields due to diverse commercial requirements. The conventional solution involves the direct-teaching method, where an operator instructs the robot on a target configuration. However, this method has distinct limitations, such as low flexibility in dealing with varied sizes and safety concerns for the operators handling large products. In this sense, this paper proposes a two-step approach for coil packaging: motion planning and assembly execution. The motion planning includes a Rapidly-exploring Random Tree algorithm and a smoothing method, allowing the robot to reach the target configuration. In the assembly execution, the packaging is considered a peg-in-hole assembly. Unlike typical peg-in-hole assembly handling two workpieces, the packaging includes three workpieces (e.g., coil, inner ring, side plate). To address this assembly, the paper suggests a suitable strategy for dual manipulation. Finally, the validity of the proposed system is demonstrated through experiments with three different sizes of coils, replicating real-world packaging situations.

A Study on the tracking control of a robot manipulator using variable structure systems (I) (가변구조 이론에 의한 로보트 팔의 추종제어에 관한 연구 (I))

  • Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.1
    • /
    • pp.41-52
    • /
    • 1985
  • This study is a step in developing the sliding mode control methodology for the robust control of a class of nonlinear time-varying systems. The methodology uses in its idealized form piecewise continuous feedback control, resulting in the state trajectory "sliding" slong a time-varying sliding surface in the state space. This idealized control law achieves perfect tracking. The method is applied to the control of a two-link manipulator handling variable loads in a flexible manufacturing system environment with noise. The result through simulation is that the tracking problem of articular robot with high precision can be realized by using the variable structure system (VSS) theory. The motions of articular robot were insensitive to various payloads. payloads.

  • PDF

A study on Control of a Dual-arm Robot (양팔 로보트의 제어에 관한 연구)

  • Kim, Jong-Hyun;Kim, Jong-Sam;Park, Man-Sik;Lee, Suck-Gyu;Bae, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.817-821
    • /
    • 1991
  • Coordinated motion control of two arms of a dual-arm robot has been studied by many researchers, because of it's potential application in assembly as well as the handling of large and heavy objects beyond the capacity of single arm. This paper derives dynamic equation of a dual-arm robot, and describes some constrains to pick up a simply shaped object at prespecified position on it. This paper concludes with describing both PD and self-tunning control algorithm for the above task.

  • PDF

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

Computational Cost Reduction Method for HQP-based Hierarchical Controller for Articulated Robot (다관절 로봇의 계층적 제어를 위한 HQP의 연산 비용 감소 방법)

  • Park, Mingyu;Kim, Dongwhan;Oh, Yonghwan;Lee, Yisoo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • This paper presents a method that can reduce the computational cost of the hierarchical quadratic programming (HQP)-based robot controller. Hierarchical controllers can effectively manage articulated robots with many degrees of freedom (DoFs) to perform multiple tasks. The HQP-based controller is one of the generic hierarchical controllers that can provide a control solution guaranteeing strict task priority while handling numerous equality and inequality constraints. However, according to a large amount of computation, it can be a burden to use it for real-time control. Therefore, for practical use of the HQP, we propose a method to reduce the computational cost by decreasing the size of the decision variable. The computation time and control performance of the proposed method are evaluated by real robot experiments with a 15 DoFs dual-arm manipulator.

A Development of a Robotic Switch Board System for Main Distributing Frames (주배선반용 로봇 스위치 보드 시스템의 개발)

  • Sung, Young-Whee;Chung, Hae;Yi, Soo-Yeong;Ahn, Hee-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.155-162
    • /
    • 2009
  • A main distributing frame(MDF) is an interface unit that is used to connect office equipment cables in a telephone company to subscriber cables. Until now, there is no automated switching system for MDFs in Korea. Manual handling of an MDF has some drawbacks; It is time-consuming, very cumbersome, and expensive. It also makes maintenance hard. An automated main distributing frame system is proposed and commercialized in Japan. In that system, a robot gripper inserts connecting pins into the cross point holes of a matrix board, which reveals several disadvantages in the aspects of space, maintenance, fault tolerance, and economical efficiency. This paper describes a newly developed robotic switch board system for MDFs. In the developed system, switches are placed at the cross point of a matrix board. There is one robot in between two switch units, so one robot deals with two switch units. In the system, positioning the robot, opening and closing switches can be done by using only a pair of motors and a pair of solenoids. The newly developed system is compact in size, reduces cost, and shows high reliability.

  • PDF

Real-Time Sink Node Architecture for a Service Robot Based on Active Healthcare/Living-support USN (능동 건강/생활지원 USN 기반 서비스 로봇 시스템의 실시간 싱크 노드 구조)

  • Shin, Dong-Gwan;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.720-725
    • /
    • 2008
  • This paper proposes a system architecture for USN with a service robot to provide more active assisted living services for elderly persons by monitoring their mental and physical well-being with USN environments at home, hospital, or silver town. Sensors embedded in USN are used to detect preventive measures for chronic disease. Logged data are transferred to main controller of a service robot via wireless channel in which the analysis of data is performed. For the purpose of handling emergency situations, it needs real-time processing on gathering variety sensor data, routing algorithms for sensor nodes to a moving sink node and processing of logged data. This paper realized multi-hop sensor network to detect user movements with biometric data transmission and performed algorithms on Xenomai, a real-time embedded Linux. To leverage active sensing, a mobile robot is used of which task was implemented with a priority to process urgent data came from the sink-node. This software architecture is anticipated to integrate sensing, communication and computing with real-time manner. In order to verify the usefulness of a proposed system, the performance of data transferring and processing on a real-time OS with non real-time OS is also evaluated.

A Collaboration Method to Confine a Robot with Multiple Robots (다 개체 로봇의 협업기법에 관한 연구)

  • Choi, Jun-Yong;Kim, Dong-Hwan;Lee, Gui-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.953-964
    • /
    • 2010
  • In this study, we proposed duty executions to confine a robot in a specific place with multiple robots. The proposed method involved the use of a role classifier for assigning labor roles, behavior selector for each robot, and a collaboration manager for handling complex situations. Further, we verified the validity of the proposed method by performing simulations to confine a robot in the specific location by using multiple robots.

A Study on Design and Durability Analysis of Vertical Multi-Jointed Robot with Translational Joint to adapt in the High Temperature Environment (고온 환경에서 적용 가능한 병진관절을 갖는 수직 다관절 로봇시스템 개발 및 내구성 분석에 관한 연구)

  • Kim, Du-Beum;Kim, Hui-Jin;Bae, Ho-Young;Kim, Sang-Hyun;Im, O-Duek;Han, Sung-Hyun;Kang, Jung-Seok;Noh, Sung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.337-351
    • /
    • 2019
  • We Proposed a new technology to develop vertical type multi-joint robot system enable to adapt in high temperature environment. The main contents is a new approach to design a vertical type articulated robot with prismatic joint and analysis of thermal for process automation of casting and forging. The proposed robot is suitable to use handling working parts of casting and forging. for the manufacturing process of forging and casting. The reliability is illustrated that the proposed technique is more stable and robust than the conventional system. This study is concerned with an analytical methodology of kinematic computation for 7 DOF manipulators for optimization of forging manufacturing process.

Development of an All-in-one Attachment-based PHC Pile Head Cutting Robot Prototype (All-in-one 어태치먼트 기반 PHC 파일 원커팅 두부정리 자동화 로봇의 프로토타입 개발)

  • Yeom, Dong-Jun;Park, Ye seul;Kim, Jun Sang;Kim, Young Suk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.37-44
    • /
    • 2019
  • The primary objective of this study is to develop a prototype of all-in-one attachment-based PHC pile head cutting robot that improves the conventional work in safety, productivity, and quality. For this, the following research works are conducted sequentially; 1)literature review, 2)development of an all-in-one attachment-based PHC pile head cutting robot prototype, 3)performance evaluation of each device, 4)economic analysis of an automated method. As a result, PHC pile cutting level sensing device, PHC pile cutting device, PHC pile handling device are developed. Futhermore, working process of an automated method is developed based on result of performance evaluation. According to the economic analysis result, the cost of the automated method was 21.37% less than that of the conventional method, and the economic efficiency was also superior(ROR 215.44%, Break-even Point 5.52month). It is expected that conclusions for future improvements are used in the development of the all-in-one attachment-based PHC pile head cutting robot to practical use.