• Title/Summary/Keyword: hand pose

Search Result 106, Processing Time 0.031 seconds

Virtual Fitting Development Based on Hand Gesture Recognition (손동작 인식 기반 Virtual Fitting 개발)

  • Kim, Seung-Yeon;Yu, Min-Ji;Jo, Ha-Jung;Jung, Seung-Won
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.596-598
    • /
    • 2019
  • 손동작 인식을 기반으로 한 Virtual fitting 시스템은 Kinect Sensor 를 사용하여 자연스러운 Fitting 을 구현할 수 있다. Kinect Sensor 를 이용한 Pose estimation, Gesture recognition, Virtual fitting 을 구현함으로써 가상으로 의복을 착용하는 소프트웨어를 소개한다.

Hand Pose Recognition Using Fingertip Detection (손가락 끝 점을 이용한 손 형상 인식)

  • Kim, Kyung-Ho;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1143-1148
    • /
    • 2006
  • 사용자 친화형 유저 인터페이스 구현을 위해 인간의 손 형상을 실시간으로 인식하는 연구의 중요성이 부각되고 있다. 그러나 인간의 손은 자유도가 크기 때문에 손 형상을 정확히 인식하기란 매우 어렵고 또한 피부색과 유사한 색을 가지는 복잡한 배경에서는 더욱 곤란하다. 본 논문에서는 별도의 센서를 부착하지 않고 카메라를 사용하여 피부색 정보에 의한 손 형상을 분할한 후 손가락 끝 점을 찾는다. 찾은 손가락 끝점을 이용하여 방향을 탐지하는 알고리즘에 대해 기술한다. 이 방법은 템플리트 매칭을 이용하여 손가락 끝 점을 탐색한 후 찾은 손 가락 끝 점과 손목의 중심을 이용하여 전, 후, 좌, 우 방향을 탐지한다. 제안하는 방법을 이용하여 3D가상현실 공간에서의 Navigation에 응용하였으며, 실험결과 전진, 후진 및 좌측, 우측의 방향전환도 매우 좋은 결과를 보였다. 또한 본 논문에서 제안하는 방법은 마우스, 키보드, 조이스틱 등의 조작 없이 전, 후, 좌, 우 방향전환을 사용자가 직관적으로 지시함으로써 보다 자연스러운 인간과 컴퓨터의 상호작용을 제공할 수 있을 것이다.

  • PDF

A New Landmark-Based Visual Servoing with Stereo Camera for Door Opening

  • Han, Myoung-Soo;Lee, Soon-Geul;Park, Sung-Kee;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.100.2-100
    • /
    • 2002
  • In this paper we propose a new visual servoing method for door opening with mobile manipulator. We use an eye-to-hand system that stereo camera is mounted on mobile platform, and adopt the position-based method. The previous methods for door opening mostly used eye-in-hand system with mono camera and required predefined knowledge such as radius and position about door grip, which was mainly caused by using mono cam era. This is also a severe constraint for pursuing general-purpose algorithm for door opening. For overcoming such drawback, we use stereo camera and suggest a new method that detect the door grip and estimate its pose from stereo depth information without predefined knowledge. Al...

  • PDF

MPEG-U based Advanced User Interaction Interface System Using Hand Posture Recognition (손 자세 인식을 이용한 MPEG-U 기반 향상된 사용자 상호작용 인터페이스 시스템)

  • Han, Gukhee;Lee, Injae;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.83-95
    • /
    • 2014
  • Hand posture recognition is an important technique to enable a natural and familiar interface in HCI(human computer interaction) field. In this paper, we introduce a hand posture recognition method by using a depth camera. Moreover, the hand posture recognition method is incorporated with MPEG-U based advanced user interaction (AUI) interface system, which can provide a natural interface with a variety of devices. The proposed method initially detects positions and lengths of all fingers opened and then it recognizes hand posture from pose of one or two hands and the number of fingers folded when user takes a gesture representing a pattern of AUI data format specified in the MPEG-U part 2. The AUI interface system represents user's hand posture as compliant MPEG-U schema structure. Experimental results show performance of the hand posture recognition and it is verified that the AUI interface system is compatible with the MPEG-U standard.

Depth Image based Egocentric 3D Hand Pose Recognition for VR Using Mobile Deep Residual Network (모바일 Deep Residual Network을 이용한 뎁스 영상 기반 1 인칭 시점 VR 손동작 인식)

  • Park, Hye Min;Park, Na Hyeon;Oh, Ji Heon;Lee, Cheol Woo;Choi, Hyoung Woo;Kim, Tae-Seong
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1137-1140
    • /
    • 2019
  • 가상현실(Virtual Reality, VR), 증강현실(Augmented Reality, AR), 혼합현실(Mixed Reality, MR) 분야에 유용한 인간 컴퓨터 인터페이스 기술은 필수적이다. 특히 휴먼 손동작 인식 기술은 직관적인 상호작용을 가능하게 하여, 다양한 분야에서 편리한 컨트롤러로 사용할 수 있다. 본 연구에서는 뎁스 영상 기반의 1 인칭 시점 손동작 인식을 위하여 손동작 데이터베이스 생성 시스템을 구축하여, 손동작 인식기 학습에 필요한 1 인칭(Egocentric View Point) 데이터베이스를 촬영하여 제작한다. 그리고 모바일 Head Mounted Device(HMD) VR 을 위한 뎁스 영상 기반 1 인칭 시점 손동작 인식(Hand Pose Recognition, HPR) 딥러닝 Deep Residual Network 를 구현한다. 최종적으로, 안드로이드 모바일 디바이스에 학습된 Residual Network Regressor 를 이식하고 모바일 VR 에 실시간 손동작 인식 시스템을 구동하여, 모바일 VR 상 실시간 3D 손동작 인식을 가상 물체와의 상호작용을 통하여 확인 한다.

An algorithm for real-time control of a 3D avatar by symmetry-formed motions (대칭형 자유동작에 의한 3D 아바타 실시간 제어 알고리즘)

  • Chang, Hee-Dong
    • Journal of Korea Game Society
    • /
    • v.3 no.2
    • /
    • pp.24-29
    • /
    • 2003
  • The market of digital avatar with internet and digital technology is increasing rapidly. The users want to express any free-formed motion of their avatars in the cyber space. The user s motion capturing method as the avatar's motion can express any free-formed motion of the avatar in real-time but the methods are expensive and inconvenient. In this paper, we proposed a new method of expressing any free-formed motion of the avatar in real-time. The proposed method is an algorithm for real-time control of a 3D avatar in symmetry-formed free motion. Specially, the algorithm aims at the motion control of a 3D avatar for online dancing games. The proposed algorithm uses the skeleton character model and controls any one of two hands of the character model by a joystick with two sticks. In the symmetry-formed motion, the position and orientation of one hand can determine the position and orientation of the other hand. And the position and orientation of a hand as an end-effector can determine the pose of the arm by Inverse Kinematics. So the algorithm can control the symmetry-formed free motions of two arms by one joystick with two sticks. In the dance game, the algorithm controls the arm motion by the joystick and the other motion by the motion captured DB.

  • PDF

Hidden Markov Model for Gesture Recognition (제스처 인식을 위한 은닉 마르코프 모델)

  • Park, Hye-Sun;Kim, Eun-Yi;Kim, Hang-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.17-26
    • /
    • 2006
  • This paper proposes a novel hidden Markov model (HMM)-based gesture recognition method and applies it to an HCI to control a computer game. The novelty of the proposed method is two-fold: 1) the proposed method uses a continuous streaming of human motion as the input to the HMM instead of isolated data sequences or pre-segmented sequences of data and 2) the gesture segmentation and recognition are performed simultaneously. The proposed method consists of a single HMM composed of thirteen gesture-specific HMMs that independently recognize certain gestures. It takes a continuous stream of pose symbols as an input, where a pose is composed of coordinates that indicate the face, left hand, and right hand. Whenever a new input Pose arrives, the HMM continuously updates its state probabilities, then recognizes a gesture if the probability of a distinctive state exceeds a predefined threshold. To assess the validity of the proposed method, it was applied to a real game, Quake II, and the results demonstrated that the proposed HMM could provide very useful information to enhance the discrimination between different classes and reduce the computational cost.

Gesture Recognition Using Zernike Moments Masked By Duel Ring (이중 링 마스크 저니키 모멘트를 이용한 손동작 인식)

  • Park, Jung-Su;Kim, Tae-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.171-180
    • /
    • 2013
  • Generally, when we apply zernike moments value for matching, we can use those moments value obtained from projecting image information under circumscribed circle to zernike basis function. However, the problem is that the power of discrimination can be reduced because hand images include lots of overlapped information due to its special characteristic. On the other hand, when distinguishing hand poses, information in specific area of image information except for overlapped information can increase the power of discrimination. In this paper, in order to solve problems like those, we design R3 ring mask by combining image obtained from R2 ring mask, which can weight information of the power of discrimination and image obtained from R1 ring mask, which eliminate the overlapped information. The moments which are obtained by R3 ring mask decrease operational time by reducing dimension through principle component analysis. In order to confirm the superiority of the suggested method, we conducted some experiments by comparing our method to other method using seven different hand poses.

The Analysis on DSP-based hands-free car kit

  • Zhang, Chun-Xu;Shin, Yun-Ho;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.228-232
    • /
    • 2008
  • For the past several years, many countries have passed or have recommended legislation making it illegal to use in-hand mobile phones while driving and several manufacturers have released car kit solutions enabling hands-free operation of the mobile phone. But an automobile environment can pose extremely harsh physical conditions impacting audio quality, safety, and reliability. This article introduced a Car Kits that provided a total entertainment and telematics solution, which support all current features within the constraints of low power consumption, form factor, price, ease-of-use, manufacture ability, testability and high total quality.

  • PDF

Effective Hand-Pose Recognition using Multi-Class SVM (다중 클래스 SVM을 이용한 효과적인 손 형태 인식)

  • Byeon, Jae-Hee;Nam, Yun-Young;Choi, Yoo-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.501-504
    • /
    • 2007
  • 본 논문은 다중 클래스 SVM을 이용하여 손 형태를 효과적으로 인식할 수 있는 방법을 제시한다. 컴퓨터의 상호작용 연구가 활발해짐에 따라 컴퓨터가 인간의 행동을 얼마나 정확히 인식할 수 있느냐에 대한 연구는 끊임없이 이루어지고 있다. 본 연구에서는 실시간으로 입력되는 손영상에 대하여 색상(Hue)과 채도(Saturation)를 이용한 컬러모델을 기반으로 조명의 영향을 줄이며 손의 영역을 추출하고, 특히, 팔영역을 포함한 손영역이 촬영된 영상에서 손목 이후 부분을 제외한 손 영역만을 추출하도록 하였다. 손 형태를 인식하기 위하여 손 영역으로부터 손의 특징을 18 개의 특징값으로 표현하였고, 이를 통해 학습된 다중 클래스 SVM을 이용하여 손 형태를 인식하였다.

  • PDF