• Title/Summary/Keyword: hammer energy

Search Result 113, Processing Time 0.03 seconds

Evaluation of the Falling Velocity of SPT Hammer via Actual Measurement (실측에 의한 표준관입시험 함마의 낙하속도 분석)

  • 이명환;이원제
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 1992
  • The SPT If value has been known to be influenced by various factors, among which the actually delivered energy level of the falling ram has the most significant effect. If N values of different energy levels are to be applied in the general analysis which is based on N values of standard energy levee the safety of the foundation might be in danger or the design might be overestimated. In this study the actual falling velocity of the ram has been measured so that the energy level could be estimated. The results Indicated that the energy level should be considered in the analysis or the design in this country, since the measured values are different from the internationally accepted scandard value, N60

  • PDF

Experimental and numerical investigation of expanded metal tube absorber under axial impact loading

  • Nouri, M. Damghani;Hatami, H.;Jahromi, A. Ghodsbin
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1245-1266
    • /
    • 2015
  • In this research, the cylindrical absorber made of expanded metal sheets under impact loading has been examined. Expanded metal sheets due to their low weight, effective collapse mechanism has a high energy absorption capacity. Two types of absorbers with different cells angle were examined. First, the absorber with cell angle ${\alpha}=0$ and then the absorber with angle cell ${\alpha}=90$. Experimental Study is done by drop Hammer device and numerical investigation is done by finite element of ABAQUS software. The output of device is acceleration-time Diagram which is shown by Accelerometer that is located on the picky mass. Also the output of ABAQUS software is shown by force-displacement diagram. In this research, the numerical and experimental study of the collapse type, force-displacement diagrams and effective parameters has been investigated. Similarly, the comparison between numerical and experimental results has been observed that these results are matched well with each other. From the obtained results it was observed that the absorber with cell angle ${\alpha}=0$, have symmetric collapse and had high energy absorption capacity but the absorber with cell angle ${\alpha}=90$, had global buckling and the energy absorption value was not suitable.

OVERVIEW OF RECENT EFFORTS THROUGH ROSA/LSTF EXPERIMENTS

  • Nakamura, Hideo;Watanabe, Tadashi;Takeda, Takeshi;Maruyama, Yu;Suzuki, Mitsuhiro
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.753-764
    • /
    • 2009
  • JAEA started the LSTF experiments in 1985 for the fourth stage of the ROSA Program (ROSA-IV) for the LWR thermal-hydraulic safety research to identify and investigate the thermal-hydraulic phenomena and to confirm the effectiveness of ECCS during small-break LOCAs and operational transients. The LSTF experiments are underway for the ROSA-V Program and the OECD/NEA ROSA Project that intends to resolve issues in thermal-hydraulic analyses relevant to LWR safety. Six types of the LSTF experiments have been done for both the system integral and separate-effect experiments among international members from 14 countries. Results of four experiments for the ROSA Project are briefly presented with analysis by a best-estimate (BE) code and a computational fluid dynamics (CFD) code to illustrate the capability of the LSTF and codes to simulate the thermal-hydraulic phenomena that may appear during SBLOCAs and transients. The thermal-hydraulic phenomena dealt with are coolant mixing and temperature stratification, water hammer up to high system pressure, natural circulation under high core power condition, and non-condensable gas effect during asymmetric SG depressurization as an AM action.

High-resolution Seismic Study Using Weigh-drop at the Boundary of Pungam Basin (중력추를 이용한 풍암분지 경계 부근에서의 고해상도 반사파 탐사)

  • Kim, Hyoun Gyu;Kim, Ki Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.519-526
    • /
    • 1998
  • A high-resolution seismic survey was conducted at the northeastern boundary of Pungam basin, one of the Cretaceous sedimentary basins in Korea. A 100 kg weight was used as an energy source and was found to be better than a sledge hammer in mapping deeper geologic structures. Several processing techniques such as f-k filtering, predictive deconvolution, and time-variant filtering are useful to enhance the signal-to-noise ratio by suppressing unwanted seismic energy. Four seismic units are recognized where many vertical faults are developed. The boundary fault between sedimentary rocks and Precambrian gneiss is identified along with a fracture zone of approximately 30 m wide. Bedding planes of the sedimentary rocks dipping westward are interpreted to be limbs of a syncline or volcanic flow. There faults and tilted bedding planes indicate that the basin had undergone significant tectonic deformation.

  • PDF

Effect of tempering on the repeated impact fatique life of the steel (강재의 충격피로파괴수명에 미치는 tempering 효과에 관한 연구)

  • 정재천
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.30-38
    • /
    • 1981
  • The fatigue characteristics of Si-Mn spring steel (AISI 9260-H, JIS SUP-6) were investigated on several heat treatment conditions. Repeated impact loads of 10kg-cm and 15kg-cm energy were applied with a cam roller drop hammer type impact fatigue testing machine. Specimens were oil-quenched, and tempered at 350.deg. C, 450.deg. C and 500.deg. C, respectively. Results obtained in these experiments are summarized as follows.; 1) The fatigue life of the specimen is decreased as the magnitude of constant impact energy is increased, regardless of heat treatment. 2) Generally, the fatigue life of the specimen is decreased as the tensile strength of the materials is increased. 3) Within the limit of these experiments, the fatigue life showed abrupt decrease at the tempering temperature of about 400.deg. C 4) The fatigue life is increased as the initial value of applied stress intensity factor(K$_{1}$) is decreased. This tendency is apparent for the low tensile strength materials.

  • PDF

A Study on Combustion Characteristics of Pulverized Fuel Made from Food Waste (음식물쓰레기로 부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Kim, Sang-Guk
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000 Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio (fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combustor temperature reaches about $1000^{\circ}C$ and CO is 77-103 ppm at 1.55 excess air ratio and SOx and Cl are under 2 ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy at the age of high oil price.

  • PDF

Analysis of colliding index on impact behavior of RC columns under repeated impact loading

  • Tantrapongsaton, Warakorn;Hansapinyo, Chayanon;Wongmatar, Piyapong;Limkatanyu, Suchart;Zhang, Hexin;Charatpangoon, Bhuddarak
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.19-32
    • /
    • 2022
  • This paper presents an investigation into the failure of RC columns under impact loadings. A numerical simulation of 19 identical RC columns subjected to single and repeated impact loadings was performed. A free-falling hammer was dropped at midspan with the same total kinetic energy input but varying mass and momentum. The specimens under the repeated impact test were struck two times at the same location. The colliding index, defined as the impact energy-momentum ratio, was proposed to explain the different impact responses under equal-energy impacts. The increase of colliding index from low to high indicates the transition of the impact response from static to dynamic and failure mode from flexure to shear. This phenomenon was more evident when the column had a greater axial load and was impacted with a high colliding index. The existence of the axial load had an inhibitory effect on the crack development and increased the shear resistance. The second impact changes the failure mode from flexural to brittle shear as found in the specimen with 20% axial load subjected to high a colliding index. Moreover, a deflection prediction equation based on the impact energy and force was limited to the low colliding index impact.

A Study on Combustion Characteristics of Purverized Fuel Made from Food Waste (음식물쓰레기로부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Yun, Jong-Deuk;Lee, Ho-Nam;Lee, Seung-Hoon;Kim, Sang-Guk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.149-152
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio(fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combueter temperature reaches about $1000^{\circ}C$ and CO is 77-103ppm at 1.55 excess air ratio and SOx and Cl are under 2ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy for high oil price era

  • PDF

Analysis of source characteristics for high-resolution seismic surveys on a tidal flat (조간대 지역에서의 고해상 탄성파 탐사를 위한 파원 특성 분석)

  • Hong, Jong Guk;Kim, Gi Yeong;Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.100-110
    • /
    • 1999
  • In order to find a good seismic source for high-resolution reflection surveys on a tidal flat, characteristic features of several sources were examined through test recording by the walkaway configuration. The sources comprise portable vibrator, 1.2 kg monkey spanner, 4.7 kg sledge hammer, and weight drops with a 30 kg and a 100 kg iron ball, respectively. We analyzed raw and filtered seismic data for the resolution of individual events, then compared various seismic sources to define suitable one for the high-resolution survey in terms of energy level and frequency contents. The study reveals that the portable vibrator is the most suitable source for the detection of and imaging geologic structures less than 20-30 m deep in a tidal flat. We ascribe this to the wide frequency band and high-frequency contents of the portable vibrator. In contrast, the hammer may be an alternative where the target depth increases up to 100 m.

  • PDF

Evaluation of the State of Rocks in Load Steps by Low-frequency Ultrasonic Flaw Detection (저주파 결함 탐지법에 의한 하중 단계에 따른 암석 내부의 상태 평가)

  • Kang, Seong-Seung;Kim, Jongheuck;Noh, Jeongdu;Na, Tae-Yoo;Jang, Hyongdoo;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • The purpose of this study was to quantitatively evaluate the state of rocks in load steps by using the low-frequency ultrasonic flaw detection method. The initial Vp-velocities measured with a CND tester were in the order of Z-axis < X-axis < Y-axis, with 1687.5 m/s along the X-axis, 1690.7 m/s along the Y-axis, 1548.3 m/s along the Z-axis, and an average of 1642.2 m/s. The overall average of the Q vlaues, measured with a Silver Schmidt hammer, was 62.6, which corresponds to a uniaxial compressive strength of ~105 MPa. The Vp-velocity, measured with a low-frequency ultrasonic flaw detector at load steps of 50%, 60%, 70%, and 80%, typically decreases in the order of X-axis < Y-axis < Z-axis with increasing load steps. This oder contrasts with that of the initial Vp-velocities. As the load step increases the factors that reduce the Vp-velocity in the X-axis direction are more influential than those in the Y-axis or Z-axis directions. This indicates that the initial state of rocks can vary and is dependent on the stress state.