• Title/Summary/Keyword: hammer energy

Search Result 113, Processing Time 0.023 seconds

SPT Rod Energy Ratios for Three Types of SPT Hammers (표준관입시험 해머의 종류에 따른 롯드 에너지 전달률)

  • An, Shin-Whan;Lee, Won-Je;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.119-129
    • /
    • 2000
  • 국내에서 가장 많이 사용되는 현장조사방법인 표준관입시험의 결과로 얻어지는 N값에 대해 가장 큰 영향을 미치는 롯드 에너지 전단률(깽 Energy Ratio)을 지반조건이 상이한 3개 현장에서 항타분석기(Pile Driving Analyzer)를 이용하여 실측하였다. 에너지 전달률에 영향을 미치는 요인들 중엣 해머의 종류, 로프의 상태, 자아틀에 감은 횟수 등의 조건을 달리하여 롯드 에너지 전달률에 미치는 영향을 측정/분석하였다. 실험결과에 의하면 도넛해머, 안전해머, 개량형 도넛해머(Modified Automatic Donut Hammer)는 롯드에너지 전달률이 각각42%, 66%, 57% 정도로 측정되었으며 로프의 상태와 자아틀에 감은 횟수는 상대적으로 영향이 적은 것으로 측정되었다. 실험결과를 바탕으로 실측된 N값을 해머의 이론적 위치에너지의 60%에 해당하는 에너지가 롯드에 전달되었을 때의 N값(N60)으로 변환하기 위한 식을 제안하였다.

  • PDF

Conceptual Safety Design Analyses of Korea Advanced Liquid Metal Reactor

  • Suk, S.D.;Park, C.K.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.66-82
    • /
    • 1999
  • The national long-term R&D program, updated in 1997, requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor(KALIMER), along with supporting R&D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R&D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of HAMMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation.

  • PDF

An Analysis for Delaminations Using Energy Release Rate in CFRP Laminates (에너지 해방률을 이용한 CFRP 적층복합재료의 층간분리 평가)

  • Gang, Gi-Won;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2115-2122
    • /
    • 2000
  • The understanding of impact-induced delamination is important in safety and reliability of composite structure. In this study, a model for arrest toughness is proposed in consideration of fracture behavior of composite materials. Also, the probabilistic model is proposed to describe the variability of arrest toughness due to the nonhomogeneity of material. For these models, experiments were conducted on the Carbon/Epoxy composite plates with various thickness using the impact hammer. The elastic work factor used in J-Integral is applicable to the evaluation of energy release rate. The fracture behavior can be described by crack arrest concept and the arrest toughness is independent of the delamination size. Additionally, a probabilistic characteristics of arrest toughness is well described by the Weibull distribution function. A variation of arrest toughness increases with specimen thickness.

Multidisciplinary optimization of collapsible cylindrical energy absorbers under axial impact load

  • Mirzaei, M.;Akbarshahi, H.;Shakeri, M.;Sadighi, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2012
  • In this article, the multi-objective optimization of cylindrical aluminum tubes under axial impact load is presented. The specific absorbed energy and the maximum crushing force are considered as objective functions. The geometric dimensions of tubes including diameter, length and thickness are chosen as design variables. D/t and L/D ratios are constricted in the range of which collapsing of tubes occurs in concertina or diamond mode. The Non-dominated Sorting Genetic Algorithm-II is applied to obtain the Pareto optimal solutions. A back-propagation neural network is constructed as the surrogate model to formulate the mapping between the design variables and the objective functions. The finite element software ABAQUS/Explicit is used to generate the training and test sets for the artificial neural networks. To validate the results of finite element model, several impact tests are carried out using drop hammer testing machine.

Dynamic response of free-end rod with consideration of wave frequency

  • Kim, Sang Yeob;Lee, Jong-Sub;Tutumluer, Erol;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • The energy transferred on drill rods by dynamic impact mainly determines the penetration depth for in-situ tests. In this study, the dynamic response and transferred energy of drill rods are determined from the frequency of the stress waves. AW-type drill rods of lengths 1 to 3 m are prepared, and strain gauges and an accelerometer are installed at the head and tip of the connected rods. The drill rods are hung on strings, allowing free vibration, and then impacted by a pendulum hammer with fixed potential energy. Increasing the rod length L increases the wave roundtrip time (2L/c, where c is the wave velocity), and hence the transferred energy at the rod head. At the rod tip, the first velocity peak is higher than the first force peak because a large and tensile stress wave is reflected, and the transferred energy converges to zero. The resonant frequency increases with rod length in the waveforms measured by the strain gauges, and fluctuates in the waveforms measured by the accelerometer. In addition, the dynamic response and transferred energy are perturbed when the cutoff frequency is lower than 2 kHz. This study implies that the resonant frequency should be considered for the interpretation of transferred energy on drill rods.

A Study of Design factors for Increasing Energy Production in Small Hydro power with Using Long Pipe (장대관로를 이용한 소수력 발전량 향상을 위한 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1134-1139
    • /
    • 2014
  • Recently the need for renewable energy development is expanding due to the global climate change, the environmental issues and the limited fossil energy resources. Dependence of energy on overseas is high in Korea. To resolve the environmental problems and to improve the energy independence rate, the development of renewable energy is more required. The small hydro power, one of the renewable energy resources, has been developing and operating from a long time ago. If we are new developing a small hydro power with the use existing dams and reservoirs, we will design the length of inlet pipe and the diameter suitable for it. However, in case of using the existing water supply pipe which had been designed suitable for water service, the designer has to review and check that the pipe is suitable for operating a generator. In this paper, the design of small hydro power using the existing long pipe of water supply, we suggest the optimum way to reduce the water hammer in pipe which causes the unsteady flow during the load-shutdown of generator, the generator operation plan for the stable supply of water and the design factor of determining the generator capacity through the analysis between discharge and head-loss.

Prediction of End Bearing Capacity for Pre-Bored Steel Pipe Piles Using Instrumented Spt Rods (SPT 에너지효율 측정 롯드를 이용한 매입말뚝의 선단지지력 예측)

  • Nam, Moon S.;Park, Young-Ho;Park, Yong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.105-111
    • /
    • 2013
  • The standard penetration test (SPT) has been widely used because of its usability, economy, and many correlations with soil properties among other factors. In SPT, hammer energy is an important factor to evaluate and calibrate N values. To measure hammer energy, an instrumented SPT rod was developed considering that stress waves transferring on rods during SPT driving are the same as stress waves transferring on piles due to pile driving. Using this idea, an instrumented SPT rod with a pile driving analyzer was applied as a pile capacity prediction tool in this study. In order to evaluate this method, SPT and dynamic cone tests with the instrumented SPT rod were conducted and also 2 pile load tests were performed on pre-bored steel pipe piles at the same test site. End bearings were predicted by CAPWAP analysis on force and velocity waves from dynamic cone penetration tests and SPT. Comparing these predicted end bearings with static pile load tests, a new prediction method of the end bearing capacity using the instrumented SPT rod was proposed.

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

다목적 콘 관입시험기의 활용

  • Bae, Myeong-Ho;Yoon, Hyung-Koo;Kim, Ju-Han;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.163-170
    • /
    • 2010
  • Today, In-Situ testing for measureing geotechnical characterization are divided by Cone Penetration Test, Standard Penetration Test and Dilatometer Test, and will vary depending on soil conditions have been applied (Korea Geotechnical Engineering, 2006). However, these methods can be applied on sand or soft clay soil. Now, many studies are progressing for evaluating the stiffness characteristic of rocks and IGM. and Nam moon suk(2006) did Texas Cone Penetrometer Test for designing field penetration pile intruded at rocks and IGM. but, reliability of Texas Cone Penetration Test has confidence limits because TCPT is testing in Texas centrally, and energy dose not measure Woojin Lee, etc. (1998) did calculate Standard Penetration Test Hammer's dynamic energy efficiency by using dongjaeha analyzer. this research, we installed strain gage and accelerometer for supply existing equipment, and develop MCP that can use variety soils. this thesis, we measured energy at head and tip of Rod for evaluating energy that transport at free falling. As a result, Energy differences are occurred at head and tip of Rod.

  • PDF

A Numerical Model for Predicting the Radial Power Profile in CANDU-PHWR Fuel Pellet (CANDU-PHWR 핵연료 소결체의 반경방향 출력분포 수치모형)

  • Woan Hwang;Suk, Ho-Chun;Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.444-455
    • /
    • 1991
  • An accurate and fast running NEDAR model for calculating radial power profile throughout fuel life in both solid and annular pellets for existing and advanced CANDU-PHWR-fuel was developed in this work. This model contains resultant flux depression equations and neutron depression data tables which have been developed for CANDU-PHWR fuel of pellet with the diameter 8.0 to 19.5 mm and enrichment 0.71-6.0 wt % U-235, over a bumup range of 0 to 840 MWh /kgU (35000 MWD/T). In order to obtain the neutron flux distribution in the fuel pellet, the CE-HAMMER physics code was run for a neutron flux spectrum appropriate to a CANDU-PHWR to give predictions of radial power profile for several ranges of fuel design parameters. The results, which were calculated by the CE-HAMMER physics code, were fitted to an equation which is solved in terms of Bessel and exponential functions in order to obtain the parameters, $textsc{k}$, $\beta$ and λ in the resultant equation. The present NEDAR model produce a radial profile which, when normalized to unity at the pellet surface, is slightly higher than the profile of the original ELESIM data table. The predictions of the fission gas release by KAFEPA-NEDAR are in slightly better agreement with the experiments than those of ELESIM. The NEDAR model described in this study has been shown to provide an effective, reliable, and accurate method for determining radial power profiles in CANDU-PHWR fuel rods without incurring a significant increase in computing time.

  • PDF