• Title/Summary/Keyword: hammer

Search Result 734, Processing Time 0.026 seconds

An Experimental Study on Steel Bar Corrosion of Reinforced Concrete Structure (철근콘크리트 구조물의 철근부식에 관한 실험 연구)

  • Chae, Young-Suk;Choi, Il-Yoon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.29-35
    • /
    • 2013
  • The purpose of this study is to investigate the steel bar corrosion and degree of reinforced concrete bridge, and analyze the cause of corrosion occurrence. Therefore they could ensure the durability and stability as to suggest the corrosion prevention of reinforced concrete structure. To study the corrosion state reinforced concrete structure, We investigate the cover of concrete, the compressive strength by schmidt hammer, the neutralization test of site, the compressive strength of core and the measurement of neutralized depth. As the results of test, the corrosion-grade of reinforced concrete structure which the degree of corrosion is 3, 4 degree get to 18% in the used time of 40 years and the time elapsed of 25 years. Therefore the corrosion of steel bar give rise to public discussion. The degree of corrosion is serious, and the neutralization come to the cover of concrete.

Evaluation of Structural Performance and Dynamic Characteristics of Korean Traditional Timber Structure Sungnyemun (한국 전통 목조건축 숭례문의 구조성능 및 동적특성 평가)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.607-614
    • /
    • 2015
  • In this research, the structural analysis and safety evaluation for Sungnyemun -No.1 national treasure of Korea- was performed. Roof loads were calculated in detail, and structural analysis model was constructed using Midas Gen ver.820. Static structural analysis under vertical loads was performed and safety of main structural members and serviceability of main horizontal members were evaluated. To evaluate dynamic characteristics of Sungnyemun, both field measurements by impact hammer test and eigenvalue analysis by structural analysis software were performed and the results were compared. Sungnyemun showed rooms in their structural capacity.

An application of operational deflection shapes and spatial filtration for damage detection

  • Mendrok, Krzysztof;Wojcicki, Jeremi;Uhl, Tadeusz
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1049-1068
    • /
    • 2015
  • In the paper, the authors propose the application of operational deflection shapes (ODS) for the detection of structural changes in technical objects. The ODS matrix is used to formulate the spatial filter that is further used for damage detection as a classical modal filter (Meirovitch and Baruh 1982, Zhang et al. 1990). The advantage of the approach lies in the fact that no modal analysis is required, even on the reference spatial filter formulation and other components apart from structural ones can be filtered (e.g. harmonics of rotational velocity). The proposed methodology was tested experimentally on a laboratory stand, a frame-like structure, excited from two sources: an impact hammer, which provided a wide-band excitation of all modes, and an electro-dynamic shaker, which simulated a harmonic component in the output spectra. The damage detection capabilities of the proposed method were tested by changing the structural properties of the model and comparing the results with the original ones. The quantitative assessment of damage was performed by employing a damage index (DI) calculation. Comparison of the output of the ODS filter and the classical modal filter is also presented and analyzed in the paper. The closing section of the paper describes the verification of the method on a real structure - a road viaduct.

A Research on the Reliability Assessment and Improvement of Spinal Cage using by the Failure Mechanism by the Impulse (충격량에 의한 고장메커니즘을 활용한 추간체유합보형재의 신뢰성 평가 방법 및 개선에 관한 연구)

  • Yu, Woo-Jin;Lee, Yong-Yoon;Heo, Sung-Yong;Ham, Jung-Koel
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.243-247
    • /
    • 2014
  • The Spinal cage is the cage-shaped implantable medical device used to treat structural abnormalities caused by degenerative intervertebral disks. In order to secure enough space to provide the mechanical stability and the intervertebral fusion, after removing the intervertebral disc, the Spinal cage is transplanted between the intervertebral space. A hammer is used to push the spinal cage into a narrow space during the spinal cage transplant surgery. Due to the impact and pressure, damage occurs frequently on the spinal cage. In this study, a test model is constructed to measure the value of impulse generally applied on the Spinal cage. The figures of internal impulse before and after the improvement of the Spinal cage are then compared to suggest direction to improve the reliability of the spinal cage.

Modal Analysis of the Bell Type Shell with Thickness and Asymmetric Effects (鐘形셀의 두께變化 및 非對稱效果에 따른 振動모우드 解析에 관한 硏究)

  • 정석주;공창덕;염영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.383-391
    • /
    • 1986
  • Mode shapes and natural frequencies of the bell type shell are analyzed numerically by the finite element method. The impulse hammer method and the Fast Fourier Transform analyzer are used for the experimental test. All types of mode shapes are expressed by the computer graphics. Numerical solutions are good agreement with the experimental results. The sustaining sound of the typical bell-type shell depend upon the first flexural mode (0-2 mode) and the second flexural mode (0-3 mode), and their mode shapes are independent upon thickness Dangjwas, holes, and added mass effects. Asymmetric effects by Dangjwas, holes and added mass give rise to beat frequencies, and the added mass is found to be most effective.

Next-Generation Sequencing and Epigenomics Research: A Hammer in Search of Nails

  • Sarda, Shrutii;Hannenhalli, Sridhar
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.2-11
    • /
    • 2014
  • After the initial enthusiasm of the human genome project, it became clear that without additional data pertaining to the epigenome, i.e., how the genome is marked at specific developmental periods, in different tissues, as well as across individuals and species-the promise of the genome sequencing project in understanding biology cannot be fulfilled. This realization prompted several large-scale efforts to map the epigenome, most notably the Encyclopedia of DNA Elements (ENCODE) project. While there is essentially a single genome in an individual, there are hundreds of epigenomes, corresponding to various types of epigenomic marks at different developmental times and in multiple tissue types. Unprecedented advances in next-generation sequencing (NGS) technologies, by virtue of low cost and high speeds that continue to improve at a rate beyond what is anticipated by Moore's law for computer hardware technologies, have revolutionized molecular biology and genetics research, and have in turn prompted innovative ways to reduce the problem of measuring cellular events involving DNA or RNA into a sequencing problem. In this article, we provide a brief overview of the epigenome, the various types of epigenomic data afforded by NGS, and some of the novel discoveries yielded by the epigenomics projects. We also provide ample references for the reader to get in-depth information on these topics.

Modal Test of the 2nd stage structure of KSLV-I (KSLV-I 2단부 구조체 모드 시험)

  • Seo, Sang-Hyeon;Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.114-119
    • /
    • 2007
  • This paper introduces modal test of the 2nd stage structure of KSLV-I which is composed to satellite, PLA(Payload Adapter), EB(Equipment Bay), KMS(Kick Motor Support) and KM(Kick Motor) without PLF(Payload Fairing). In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer. From this test, dynamic properties of the 2nd stage structure of KSLV-I can be obtained. Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of KSLV-I were identified.

  • PDF

Vibration Characteristics of Cantilever Beam with a Crack (단일 크랙을 갖는 외팔보의 진동특성)

  • Kim, Jong-Do;Jo, Ji-Yun;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2014
  • In this paper, the natural frequency and damping ratio are analyzed with the acceleration signal of an Euler-Bernoulli beam using the impact hammer test. The results are presented according to crack depth and position using the recursive least squares method. The results are compared and investigated with FEM analysis of CATIA. Both methods agree well with each other regarding the natural mode characteristics. The captured acceleration can be used for the calculation of the natural frequency and damping ratio using time series methods that are based on the measured acceleration. Using these data, a recursive time series model with the acceleration signal was configured and the behaviors of the natural frequency and damping ratio were investigated and analyzed. Finally, the results can be used for the prediction of crack position and depth under different crack conditions for an Euler-Bernoulli beam.

Design Consideration about Large Caliber Piping of Polyethylene Material (폴리에틸렌 소재의 대구경 배관 설계 고찰)

  • Kim, Eung-Soo;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • As the polyethylene of high strength and ductility stabilized chemically has been mass-produced, it is spreading widely as material of industrial piping and water service piping. Recently, High density polyethylene (HDPE) pipe has been used even in water supply system of plant as buried pipe instead of cast iron pipe in domestic, but HDPE pipe has a probability of occurrence of damage if plant design and operating conditions are not considered. As a result of reviewing with respect of system design engineering based on operating conditions and verification test results, the specific design criteria for the use of HDPE piping in fire water supply system need to be established because of the possibility of crack damage due to water hammer.

Location of Acoustic Emission Sources in a PSC Beam using Least Squares (최소제곱법에 의한 PSC보의 음향방출파원 위치결정)

  • Lee Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.271-279
    • /
    • 2006
  • Acoustic Emission (AE) technology is an effective nondestructive testing for continuous monitoring of defect formation and failures in structural materials. This paper presents a source location model using Acoustic Emission (AE) sensors in a Pre-Stressed Concrete (PSC) beam and the evaluation of the model was performed through lab experiments. 54 AE events were made on the surface of the 5m-PSC beam using a Schmidt Hammer and arrival times were measured with 7AE sensors. The source location f3r each event was estimated using least squares. The results were compared with actual positions and the RMSE (Root Mean Square Errors) was about 2cm.