• Title/Summary/Keyword: halide perovskite

Search Result 58, Processing Time 0.031 seconds

Alignment of Metal Halide Perovskite Nanowires and Their Application in Photodetectors (금속 할라이드 페로브스카이트 나노와이어의 광 센서 소자 응용)

  • Sihn, Moon Ryul;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.307-312
    • /
    • 2022
  • Metal halide perovskite (MHP) nanocrystals (NCs) have emerged as promising materials for various optoelectronic applications including photovoltaics, light-emitting devices, and photodetectors because of their high absorption coefficient, high diffusion length, and photoluminescence quantum yield. However, understanding the morphological evolution of the MHP NCs as well as their controlled assembly into optoelectronic devices is still challenging and will require further investigation of the colloidal chemistry. In this study, we found that the amount of n-octylamine (the capping agent) plays a crucial role in inducing further growth of the MHP NCs into one-dimensional nanowires during the aging process. In addition, we demonstrate that the dielectrophoresis process can permit self-alignment of the MHP nanowires with uniform distribution and orientation on interdigitated electrodes. A strong light-matter interaction in the MHP NWs array was observed under UV illumination, indicating the photo-induced activation of their luminescence and electrical current in the self-aligned MHP nanowire arrays.

Inorganic charge transport materials for high reliable perovskite solar cells (고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층)

  • Park, So Jeong;Ji, Su Geun;Kim, Jin Young
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.

Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells

  • Jo, Jea Woong;Yoo, Yongseok;Jeong, Taehee;Ahn, SeJin;Ko, Min Jae
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.657-668
    • /
    • 2018
  • Organic-inorganic hybrid lead halide perovskites have been extensively investigated for various optoelectronic applications. Particularly, owing to their ability to form highly crystalline and homogeneous films utilizing low-temperature solution processes (< $150^{\circ}C$), perovskites have become promising photoactive materials for realizing high-performance flexible solar cells. However, the current use of mesoporous $TiO_2$ scaff olds, which require high-temperature sintering processes (> $400^{\circ}C$), has limited the fabrication of perovskite solar cells on flexible substrates. Therefore, the development of a low-temperature processable charge-transporting layer has emerged as an urgent task for achieving flexible perovskite solar cells. This review summarizes the recent progress in low-temperature processable electron- and hole-transporting layer materials, which contribute to improved device performance in flexible perovskite solar cells.

Halide Perovskite Single Crystals (할라이드 페로브스카이트 단결정)

  • Choi, Jin San;Jo, Jae Hun;Woo, Do Hyun;Hwang, Young-Hun;Kim, Ill Won;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.283-295
    • /
    • 2021
  • For the last decades, a research hotspot for the halide perovskites (HPs) is now showing great progress in terms of improving efficiency for numerous photovoltaic devices (PVDs). However, it still faces challenges in the case of long-term stability in the air atmosphere. Defect-free high-quality HP single crystals show their promising properties for the remarkable development of highly efficient and stable PVDs. Here, we summarize the growth processing routes for the stable HP single crystals as well as briefly discuss the pros and cons of those well-established synthesis routes. Furthermore, we briefly include the comparison note between the HP single crystals and polycrystalline perovskite films regarding their device applications. Based on the future progress, the review concludes subjective perspectives and current challenges for the development of HPs high-quality PVDs.

Recent Research Progress on Eco-Friendly Perovskite Solar Cells (친환경 페로브스카이트 태양전지 최신 기술 동향)

  • You, Hyung Ryul;Choi, Jongmin
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • Metal halide perovskite materials are considered as promising semiconducting materials for next-generation solar cells due to their unique electrical and optical properties. Intensive progress in perovskite solar cell yielded a certified power conversion efficiency over 24%. However, most of highly efficient perovskite solar cells required Pb-based perovskite materials, which is a critical obstacle for their commercialization, and development of Pb-free perovskite materials is one of recent urgent issues in this field. In this paper, we will introduce recent research progress on Pb-free perovskite solar cells.

Recent Progress in Surface/Interface Defect Engineering of Perovskite for Improving Stability (페로브스카이트의 표면 및 계면 결함 제어를 통한 안정성 향상 기술 경향)

  • Kim, Min
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.41-50
    • /
    • 2020
  • Organic-inorganic metal halide perovskite has shown a great promise in photovoltaic applications because of the skyrocketing power-conversion efficiencies up to 25.2% and their potentially low production cost. However, it also has critical issue of substantial material degradation during device operation to be overcome for successful commercialization. Understanding the nature of defects and their photochemistry related to material degradation is needed. Furthermore, strategy to passivate defects in perovskite should be adopted to improve the stability of perovskite. In this article, we present predominant defects formation in perovskite that contribute to material degradations in perovskite solar cells. We then discuss how material stability can be improved through reliable defect passivation engineering.

Synthesis and Characterization of Bandgap-modulated Organic Lead Halide Single Crystals

  • Park, Dae Young;Byun, Hye Ryung;Lee, A Young;Choi, Ho Min;Lim, Seong Chu;Jeong, Mun Seok
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1716-1724
    • /
    • 2018
  • Single crystal of organic lead halide ($CH_3NH_3PbX_3$; $CH_3NH^+_3$ = methylammonium (MA), $X=Cl^-$, $Br^-$, $I^-$) is the best candidate for material intrinsic property studies due to no grain boundary and high crystal quality than the film having a lot of grain boundary and surface defects. The representative crystallization methods are inverse temperature crystallization (ITC) and anti-solvent vapor assisted crystallization (AVC). Herein, we report bandgap modulated organic lead halide single crystals having a bandgap ranging from ~ 2.1 eV to ~ 3 eV with ITC and AVC methods. The bandgap modulation was achieved by controlling the solvents and chloride-to-bromide ratio. Structural, optical and compositional properties of prepared crystals were characterized. The results show that the crystals synthesized by the two crystallization methods have similar properties, but the halide ratios in the crystals synthesized by the AVC method are controlled more quantitatively than the crystals synthesized by ITC.

Crystallographic study of in-plane aligned hybrid perovskite thin film

  • Lee, Rin;Kim, Se-Jun;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.163.1-163.1
    • /
    • 2016
  • Lead halide perovskites CH3NH3PbX3 (X=Cl, Br, I) have received great interest in the past few years because of their excellent photoelectronic properties as well as their low-cost solution process. Their theoretical efficiency limit of the solar cell devices was predicted around 31% by a detailed balance model for the reason that exceptional light-harvesting and superior carrier transport properties. Additionally, these excellent properties contribute to the applications of optoelectronic devices such as LASERs, LEDs, and photodetectors. Since these devices are mainly using perovskite thin film, one of the most important factor to decide the efficiency of these applications is the quality of the film. Even though, optoelectrical devices are composed of polycrystalline thin film in general, not a single crystalline form which has longer carrier diffusion length and lower trap density. For these reasons, monodomain perovskite thin films have potential to elicit an optimized device efficiency. In this study, we analyzed the crystallography of the in-plane aligned perovskite thin film by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Also the basic optic properties of perovskites were checked using scanning electron microscopy (SEM) and UV-Vis spectrum. From this work, the perovskite which is aligned in all directions both of out-of-plane and in-plane was fabricated and analyzed.

  • PDF

Highly Efficient Flexible Perovskite Solar Cells by Low-temperature ALD Method

  • Kim, Byeong Jo;Kwon, Seung Lee;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.469.2-469.2
    • /
    • 2014
  • All-solid-state solar cell based on Chloride doped organometallic halide perovskite, (CH3NH3)PbIxCl3-x, has achieved a highly power conversion efficiency (PCE) to over 15% [1] and further improvements are expected up to 20% [2]. In this way, solar cells using novel light absorbing perovskite material are actively being studied as a next generation solar cells. However, making solution-process require high temperature up to $500^{\circ}C$ to form compact hole blocking layer and sinter the mesoporous oxide scaffold layer. Because of this high temperature process, fabrication of flexible solar cells on plastic substrate is still troubleshooting. In this study, we fabricated highly efficient flexible perovskite solar cells with PCE in excess of 11%. Atomic layer deposition (ALD) is used to deposit dense $TiO_2$ as hole blocking layer on ITO/PEN substrate. The all fabrication process is done at low temperature below $150^{\circ}C$. This work shows that one of the important blueprint for commercial use of perovskite solar cells.

  • PDF

Uniform PMMA-CH3NH3PbBr3 Nanoparticle Composite Film for Optoelectronic Application

  • Kirakosyan, Artavazd;Yun, Seokjin;Choi, Jihoon
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.307-311
    • /
    • 2017
  • Organometal halide perovskite materials, due to the tunability of their electronic and optical properties by control of composition and structure, have taken a position of significant importance in optoelectronic applications such as photovoltaic and lighting devices. Despite numerous studies on the structure - property relationship, however, practical application of these materials in electronic and optical devices is still limited by their processability during fabrication. Achieving nano-sized perovskite particles embedded in a polymer matrix with high loading density and outstanding photoluminescence performance is challenging. Here, we demonstrate that the careful control of nanoparticle formation and growth in the presence of poly(methyl methacrylate) results in perovskite nanoparticle - polymer nanocomposites with very good dispersion and photoluminescence. Furthermore, this approach is found to prevent further growth of perovskite nanoparticles, and thus results in a more uniform film, which enables fabrication using the perovskite nanoparticles.