DOI QR코드

DOI QR Code

Uniform PMMA-CH3NH3PbBr3 Nanoparticle Composite Film for Optoelectronic Application

  • Kirakosyan, Artavazd (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yun, Seokjin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Jihoon (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2017.02.23
  • Accepted : 2017.04.18
  • Published : 2017.06.27

Abstract

Organometal halide perovskite materials, due to the tunability of their electronic and optical properties by control of composition and structure, have taken a position of significant importance in optoelectronic applications such as photovoltaic and lighting devices. Despite numerous studies on the structure - property relationship, however, practical application of these materials in electronic and optical devices is still limited by their processability during fabrication. Achieving nano-sized perovskite particles embedded in a polymer matrix with high loading density and outstanding photoluminescence performance is challenging. Here, we demonstrate that the careful control of nanoparticle formation and growth in the presence of poly(methyl methacrylate) results in perovskite nanoparticle - polymer nanocomposites with very good dispersion and photoluminescence. Furthermore, this approach is found to prevent further growth of perovskite nanoparticles, and thus results in a more uniform film, which enables fabrication using the perovskite nanoparticles.

Keywords

References

  1. G. C. Papavassiliou, Prog. Solid St. Chem., 25, 125 (1997). https://doi.org/10.1016/S0079-6786(97)80886-2
  2. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Bertolotti, N. Masciocchi, A. Guagliardi and M. V. Kovalenko, J. Am. Chem. Soc., 138, 14202 (2016). https://doi.org/10.1021/jacs.6b08900
  3. A. Mancini, P. Quadrelli, C. Milanese, M. Patrini, G. Guizzetti and L. Malavasi, Inorg. Chem., 54, 8893 (2015). https://doi.org/10.1021/acs.inorgchem.5b01843
  4. I. B. Koutselasy, L. Ducassez and G. C. Papavassiliou, J. Phys. Condens. Matter, 8, 1217 (1996). https://doi.org/10.1088/0953-8984/8/9/012
  5. A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Hoye, K. C. Godel, T. Bein, P. Docampo, S. E. Dutton, M. F. De Volder and R. H. Friend, Nano Lett., 9, 6095 (2015).
  6. F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, ACS Nano, 9, 4533 (2015). https://doi.org/10.1021/acsnano.5b01154
  7. J. H. Noh, S. H. Im, J. H. Heo and T. N. Mandal and S. I. Seok, Nano Lett., 13, 1764 (2013). https://doi.org/10.1021/nl400349b
  8. G. Li, Z.-K. Tan, D. Di, M. L. Lai, L. Jiang, J. H.-W. Lim, R. H. Friend and N. C. Greenham, Nano Lett., 15, 2640 (2015). https://doi.org/10.1021/acs.nanolett.5b00235
  9. Y.-H. Kim, H. Cho, J. H. Heo, T.-S. Kim, N. S. Myoung, C.-L. Lee, S. H. Im and T.-W. Lee, Adv. Mater., 27, 1248 (2014).
  10. Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Nature Nanotechnol., 9, 687 (2014). https://doi.org/10.1038/nnano.2014.149
  11. M. F. Ayguler, M. D. Weber, B. M. D. Puscher, D. D. Medina, P. Docampo and R. D. Costa, J. Phys. Chem. C, 119, 12047 (2015). https://doi.org/10.1021/acs.jpcc.5b02959
  12. J. Li, S. G. R. Bade, X. Shan and Z. Yu, Adv. Mater., 27, 5196 (2015). https://doi.org/10.1002/adma.201502490
  13. G. C. Papavassiliou, G. Pagona, N. Karousis, G. A. Mousdis, I. Koutselas and A. Vassilakopoulou, J. Mater. Chem., 22, 8271 (2012). https://doi.org/10.1039/c2jm15783g
  14. S. G. R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, K. Hanson, T. Siegrist, C. Xu and Z. Yu, ACS Nano, 10, 1795 (2016). https://doi.org/10.1021/acsnano.5b07506
  15. Q. Xue, Z. Hu, C. Sun, Z. Chen, F. Huang, H.-L. Yip and Y. Cao, RSC Adv., 5, 775 (2015). https://doi.org/10.1039/C4RA11739E
  16. H.-H. Fang, S. Adjokatse, H. Wei, J. Yang, G. R. Blake, J. Huang, J. Even and M. A. Loi, Sci. Adv., 2, e1600534 (2016). https://doi.org/10.1126/sciadv.1600534
  17. J. H. Kim and S.-H. Kim, Dyes Pigments, 134, 198 (2016). https://doi.org/10.1016/j.dyepig.2016.07.015
  18. S. Liu, F. Zheng, I. Grinberg and A. M. Rappe, J. Phys. Chem. Lett., 7, 1460 (2016). https://doi.org/10.1021/acs.jpclett.6b00527
  19. Y.-J. Kim, T.-V. Dang, H.-J. Choi, B.-J. Park, J.-H. Eom, H.-A Song, D. Seol, Y. Kim, S.-H. Shin, J. Nah and S.- G. Yoon, J. Mater. Chem. A, 4, 756 (2016). https://doi.org/10.1039/C5TA09662F
  20. R. Ding, H. Liu, X. Zhang, J. Xiao, R. Kishor, H. Sun, B. Zhu, G. Chen, F. Gao, X. Feng, J. Chen, X. Chen, X. Sun and Y. Zheng, Adv. Funct. Mater., 8, 7708 (2016).
  21. S. Masi, S. Colella, A. Listorti, V. Roiati, A. Liscio, V. Palermo, A. Rizzo and G. Gigli, Sci. Rep., 5, 7725 (2015). https://doi.org/10.1038/srep07725
  22. Y. Wang, J. He, H. Chen, J. Chen, R. Zhu, P. Ma, A. Towers, Y. Lin, A. J. Gesquiere, S.-T. W and Y. Dong, Adv. Mater., 28, 10710 (2016). https://doi.org/10.1002/adma.201603964
  23. Q. Zhou, Z. Bai, W.-G Lu, Y. Wang, B. Zou and H. Zhong, Adv. Mater., 28, 9163 (2016). https://doi.org/10.1002/adma.201602651
  24. L. C. Schmidt, A. Pertegas, S. Gonzaez-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink and R. E. Galian, J. Am. Chem. Soc., 136, 850 (2014). https://doi.org/10.1021/ja4109209
  25. A. Kirakosyan, J. Kim, S. W. Lee, I. Swathi, S.-G. Yoon and J. Choi, Cryst. Growth Des., 17, 794 (2017). https://doi.org/10.1021/acs.cgd.6b01648
  26. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 13, 1764 (2013). https://doi.org/10.1021/nl400349b
  27. K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton and T. Pullerits, J. Phys. Chem. Lett., 6, 2969 (2015). https://doi.org/10.1021/acs.jpclett.5b01252