• Title/Summary/Keyword: half-value layer (HVL)

Search Result 42, Processing Time 0.022 seconds

Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials

  • Thair Hussein Khazaalah;Iskandar Shahrim Mustafa ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4708-4714
    • /
    • 2022
  • The novelty in the present search, the Soda-Lime-Silica (SLS) glass waste to prepare free lead glass shielding was used in order to limit the accumulation of glass waste, which requires extensive time to decompose. This also saves on the consumption of pure SiO2, which is a finite resource. Furthermore, the combining of BaO with Bi2O3 into a glass network leads to increased optical properties and improved attenuation. The UV-Visible Spectrophotometer was used to investigate the optical properties and the radiation shielding properties were reported for current glass samples utilizing the PhysX/PDS online software. The optical property results indicate that when BaO content increases in glass structure, the Urbach energy ΔE, and refractive index n increases while the energy optical band gap Eopt decreases. The result of the metallisation criteria (M) revealed that the present glass samples are nonmetallic (insulators). Furthermore, the radiation shielding parameter findings suggest that when BaO was increased in the glass structure, the linear attenuation coefficient and effective atomic number (Zeff) rose. But the half-value layer HVL declined as the BaO concentration grew. According to the research, the glass samples are non-toxic, transparent to visible light, and efficient radiation shielding materials. The Ba5 sample is considered the best among all the samples due to its higher attenuation value and lower HVL and MFP values, which make it a suitable candidate as transparent glass shield shielding.

Correlation between the concentration of TeO2 and the radiation shielding properties in the TeO2-MoO3-V2O5 glass system

  • Y. Al-Hadeethi ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1218-1224
    • /
    • 2023
  • We investigated the radiation shielding competence for TeO2-V2O5-MoO3 glasses. The Phy-X software was used to report the radiation shielding parameters for the present glasses. With an increase in TeO2 and MoO3 content, the samples' linear attenuation coefficient improves. However, at low energies, this change is more apparent. At low energy, the present samples have an effective atomic number (Zeff) that is relatively high (in order of 16.17-24.48 at 0.347 MeV). In addition, the findings demonstrated that the density of the samples is a very critical factor in determining the half value layer (HVL). The minimal HVL for each sample can be found at 0.347 MeV and corresponds to 1.776, 1.519, 1.391, 1.210 and 1.167 cm for Te1 to Te5 respectively. However, the highest HVL of these glasses is recorded at 1.33 MeV, which corresponds to 3.773, 3.365, 3.218, 2.925 and 2.908 cm respectively. The tenth value layer results indicate that the thickness of the specimens needs to be increased in order to shield the photons that have a greater energy. Also, the TVL results demonstrated that the sample with the greatest TeO2 and MoO3 concentration has a higher capacity to attenuate photons.

Determination of the Equivalent Energy of a 6 MV X-ray Beam (6 MV X-선 빔의 등가에너지 결정)

  • Kim, Jong-Eon;Park, Byung-Do
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.8
    • /
    • pp.591-596
    • /
    • 2016
  • The purpose of this study is to determine the equivalent energy of a 6MV X-ray beam in the experiment. The half-value layer (HVL) of lead for the 6 MV X-ray beam was measured using an ionization chamber. The linear attenuation coefficients were calculated with HVL. And, the mass attenuation coefficient was obtained by dividing the linear attenuation coefficient by the density of lead. The equivalent energy of mass attenuation coefficient was determined using the photon energy versus mass attenuation coefficient data of lead given by National Institute of Standards and Technology (NIST). In conclusion, the equivalent energy of the 6 MV X-ray beam was determined to be 1.61 MeV. This equivalent energy was determined to be about 30% lower than reported by Reft. The reason is presumed to be due to the presence of an air cavity between the lead attenuators.

Study on Usefulness of Entrance Surface Dose (ESD), Entropy Analysis Method to Evaluate Ionization Chamber Performance and Implementation of Optimal Chamber Combination Model when using Automatic Exposure Control (AEC) Device in Digital Radiography (DR) (디지털 방사선 시스템(DR)의 자동노출제어장치 이용 시 이온 챔버의 성능 평가를 위한 엔트로피 분석법의 유용성과 최적의 챔버 조합 모델 구현 연구)

  • Hwang, Jun-Ho;Choi, Ji-An;Lee, Kyung-Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.375-383
    • /
    • 2020
  • This study aimed to propose a methodology for quantitatively analyzing problems resulting from the performance and combination of the ionization chamber when using an automatic exposure control (AEC) and to optimize the performance of the digital radiography (DR). In the experimental method, the X-ray quality of the parameters used for the examination of the abdomen and pelvis was evaluated by percentage average error (PAE) and half value layer (HVL). Then, the stability of the radiation output and the image quality were analyzed by calculating the entrance surface dose (ESD) and entropy when the three ionization chambers were combined. As a result, all of the X-ray quality of the digital radiography used in the experiment showed a percentage average error and a half value layer in the normal range. The entrance surface dose increased in proportion to the combination of chambers, and entropy increased in proportion to the combination of ionization chambers except when three chambers were combined. In conclusion, analysis using entrance surface dose and entropy was found to be a useful method for evaluating the performance and combination problems of the ionization chamber, and the optimal performance of the digital radiography can be maintained when two or less ionization chambers are combined.

Calculation of X-ray spectra characteristics and kerma to personal dose equivalent Hp(10) conversion coefficients: Experimental approach and Monte Carlo modeling

  • Arectout, A.;Zidouh, I.;Sadeq, Y.;Azougagh, M.;Maroufi, B.;Chakir, E.;Boukhal, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.301-309
    • /
    • 2022
  • This work aims to establish some X-ray qualities recommended by the International Standard Organization (ISO) using the half-value layer (HVL) and Hp(10) dosimetry approaches. The HVL values of the following qualities N-60, N-80, N-100, N-150 and N-250 were determined using various attenuation layers. The obtained results were compared to those of reference X-ray beam qualities and a good agreement was found (difference less than 5% for all qualities). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) radiation transport Monte Carlo toolkit was employed to simulate the production of X-ray spectra. The characteristics HVLs, mean energy and the spectral resolution of simulated spectra have been calculated and turned out to be conform to the ISO reference ones (difference less than the limit allowed by ISO). Furthermore, the conversion coefficients from air kerma to personal dose equivalent for simulated and measured spectra were fairly similar (the maximum difference less than 4.2%).

Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV

  • Akhdar, H.;Marashdeh, M.W.;AlAqeel, M.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.701-708
    • /
    • 2022
  • The mass attenuation coefficients (μm) of polyethylene glycol (PEG) of different molecular weights (1000-200,000) were measured using single-beam photon transmission. The X-ray fluorescent (XRF) photons from Zinc (Zn), Zirconium (Zr), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd) targets were used to determine the attenuation of gamma radiation of energy range between 8.67 and 23.19 keV in PEG samples. The results were compared to theoretical values using XCOM and Monte Carlo simulation using Geant4 toolkit which was developed to validate the experiment at those certain energies. The mass attenuation coefficients were then used to compute the effective atomic numbers, electron density and half value layers for the studied samples. The outcomes showed good agreement between experimental and simulated results with those calculated theoretically by XCOM within 5% deviation. The PEG 1000 sample showed slightly higher μm value compared with the other samples. The dependence of the photon energy and PEG composition on the values of μm and HVL were investigated and discussed. In addition, the values of Zeff and Neff for all PEG samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.

Synthesis of barium-doped PVC/Bi2WO6 composites for X-ray radiation shielding

  • Gholamzadeh, Leila;Sharghi, Hamed;Aminian, Mohsen Khajeh
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.318-325
    • /
    • 2022
  • In this study, composites containing undoped and barium-doped Bi2WO6:Ba2+were investigated for their shielding against diagnostic X-ray. At first, Bi2WO6 and barium-doped Bi2WO6 were synthesized with different weight percentages of barium oxide through a hydrothermal process. The as-synthesized nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy (RS). After that, some shields were generated with undoped and barium-doped Bi2WO6:Ba2+ nanostructure particles incorporated into polyvinyl chloride (PVC) polymer with different thicknesses and 15% weight of the nanostructure. Finally, the prepared samples were exposed to an X-ray tube at 40, 80, and 120 kV voltages, 10 mAs and, 44.5 cm SID (i.e. the distance from the X-ray beam source to the specimen). Linear and mass attenuation coefficients were also calculated for different samples. The results indicated that, among the samples, the one with 7.5 mmol barium-doped Bi2WO6 had the most attenuation at the voltage of 40kV, and the attenuation coefficients would increase with an increase in the amount of barium. The samples with 15 and 17.5 mmol barium-doped Bi2WO6 had higher attenuation than the others at 80 and 120 kV. Moreover, the half-value layer (HVL), tenth-value layer (TVL) and 0.25 mm lead equivalent thickness were calculated for all the samples. The lowest HVL value was for the sample with 7.5 mmol barium-doped Bi2WO6. As the result clearly show, an increment in the barium-doping content leads to a decrease in both HVL and TVL. In every three voltages, 0.25 mm lead equivalent thickness of the barium-doped composites (7.5 mmol and 15 mmol) had less than the other composites. The lowest value of 0.25 mm lead equivalent thickness was 7.5 barium-doped in 40 kV voltage and 15 mmol barium-doped in 80 kV and 120 kV voltages. These results were obtained only for 15% weight of the nanostructure.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding

  • Ouda, Ahmed S.
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.61-75
    • /
    • 2014
  • This study aimed to investigate the suitability of some concrete components for producing "high-performance heavy density concrete" using different types of aggregates that could enhances the shielding efficiency against ${\gamma}$-rays. 15 mixes were prepared using barite, magnetite, goethite and serpentine aggregates along with 10% silica fume, 20% fly ash and 30% blast furnace slag to total OPC content for each mix. The mixes were subjected to compressive strength at 7, 28 and 90 days. In some mixes, compressive strengths were also tested up to 90 days upon replacing sand with the fine portions of magnetite, barite and goethite. The mixes containing magnetite along with 10% SF reaches the highest compressive strength exceeding over M60 requirement by 14% after 28 days. Whereas, the compressive strength of concrete containing barite was very close to M60 and exceeds upon continuing for 90 days. Also, the compressive strength of high-performance concrete incorporating magnetite fine aggregate was significantly higher than that containing sand by 23%. On the other hand, concrete made with magnetite fine aggregate had higher physico-mechanical properties than that containing barite and goethite. High-performance concrete incorporating magnetite fine aggregate enhances the shielding efficiency against ${\gamma}$-rays.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.