• Title/Summary/Keyword: half-bridge converter

Search Result 373, Processing Time 0.023 seconds

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.

A Study on Characteristic Estimation of Single-Stage High Frequency Resonant DC-DC (단일 전력단 고주파 공진 DC-DC 컨버터의 특성평가에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Nam, Seung-Sik;Sim, Kwang-Yeal;Lee, Bong-Seob;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.318-320
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the Proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

ZVS Center-Tapped Half-Bridge Zeta Converter with Reduced Output Filter Inductor Size

  • Lee, Jae-Bum;Park, Ki-Bum;Kim, Hyoung-Suk;Seong, Hyun-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.163-164
    • /
    • 2011
  • In this paper, a new half-bridge zeta converter employing a center-tapped rectifier is proposed. The proposed converter provides a bidirectional powering path in the rectifier. As a result, its improved rectifier voltage waveform reduces the output filter inductor size. Also, it maintains a wide ZVS range due to the characteristic of the conventional single-ended half-bridge zeta converter. The operational principles, the theoretical analysis, and the design considerations of the proposed converter are analyzed. To verify the performance of the proposed converter, experimental results from a 180W prototype are presented.

  • PDF

A Tightly Regulated Triple Output Asymmetrical Half Bridge Flyback Converter

  • Hyeon, Byeong-Cheol;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • In this paper, a tightly regulated triple output asymmetrical half bridge flyback (ASHF) converter is proposed. In order to regulate all output voltages, pulse frequency modulation (PFM), pulse width modulation (PWM) and phase delay (PD) are used simultaneously. In comparison with the conventional PWM-PD method, the interactions among the control variables are minimized and the operating range is increased. By the utilization of a multi winding transformer, the auxiliary transformer and the blocking capacitor are eliminated and the size and cost of the proposed converter is reduced. The operation principle of the converter is explained and the modes of operation are investigated. Based on the results, the steady state characteristics of the converter are explored. A 24V/10A, 12V/5A, 5V/10A hardware prototype is built and tested to verify the analysis results and the voltage regulation of the triple outputs of the proposed converter.

Start-up In-rush Current Reduction Technique of Asymmetrical Half-Bridge DC/DC Converter for PC Power Supply (PC 파워 서플라이용 비대칭 하프브리지 DC/DC 컨버터의 초기 구동시 돌입전류 제거 기법)

  • Kim Jae-Kuk;Lee Sung-Sae;Oh Won-Sik;Kim Jung-Eun;Moon Gun-Woo;Gil Chang-Hyun;Cho Ja-Ryong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.251-253
    • /
    • 2006
  • This paper presents a start-up in-rush current reduction technique of asymmetry half-bridge DC/DC converter for PC power supply. The proposed converter is composed center-tapped half-bridge converter with blocking capacitor. The proposed converter can reduce the severe in-rush current when the proposed converter is power up. The validity of this study is confirmed from the experimental results.

  • PDF

Failure Prediction Monitoring of DC Electrolytic Capacitors in Half-bridge Boost Converter (단상 하프-브리지 부스트 컨버터에서 DC 전해 커패시터의 고장예측 모니터링)

  • Seo, Jang-Soo;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.345-350
    • /
    • 2014
  • DC electrolytic capacitor is widely used in the power converter including PWM inverter, switching power supply and PFC Boost converter system because of its large capacitance, small size and low cost. In this paper, basic characteristics of DC electrolytic capacitor vs. frequency is presented and the real-time estimation scheme of ESR and capacitance based on the bandpass filtering is adopted to the single phase boost converter of uninterruptible power supply to diagnose its split dc-link capacitors. The feasibility of this real-time failure prediction monitoring system is verified by the computer simulation of the 5[kW] singe phase PFC half-bridge boost converter.

The Efficiency Characteristics of LLC Half-Bridge Resonant Converter (LLC 하프 브리지 공진형 컨버터 효율 특성)

  • Kim, Sung-Wan;Kim, Chang-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1366-1371
    • /
    • 2011
  • The resonant converter cause the high voltage stress according to the input voltage, which increases the conduction loss in converter power switches. The topology of LLC half bridge resonant converter provides ZVS characteristic and also the stress of voltage and current is smaller than that of the general resonant converters. So we can expect the higher efficiency. In this paper, the analysis of the characteristics of the converter efficiency and the best conditions for highest efficiency were investigated. As a result, the efficiency of utilizing up to 93% is achieved.

ZVS Half-bridge Converter of Simple Structure (간단한 구조의 영전압스위칭 하프브리지 컨버터)

  • Yoo, Doo-Hee;Jeong, Gang-Youl;Lee, Jae-Min
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.444-446
    • /
    • 2007
  • This paper presents a ZVS (Zero Voltage Switching) half-bridge converter of simple structure. The operational principle of the proposed converter is explained, briefly. It is shown through that the experimental results the proposed converter operates excellently as a high efficiency converter. As the proposed converter utilizes the transformer leakage inductor as the resonant inductor, its structure is simplified.

  • PDF

Analysis of Current Mode Controlled Zero Voltage Switching Half Bridge PWM Converter (전류모드로 제어되는 영전압 스위칭 하프 브리지 PWM 컨버터의 해석)

  • 정영석;권순재
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.64-69
    • /
    • 2003
  • There exist the high frequency components, which can not be predicted by the low frequency model, due to the presence of sampling effect in current mode control. In this paper, the output voltage equations for the ZVS half bridge PWM convertor are derived from the steady state analysis, and the sampling gain presented in the current control loop is Investigated to improve the Prediction Performance of low frequency model of ZVS half bridge PWM converter.

A Study on the Synchronous Rectifier Driver Circuits in the LLC Resonant Half-Bridge Converter (LLC 공진형 하프브릿지 컨버터의 동기정류기 구동회로에 관한 연구)

  • Ahn, Tae-Young;Im, Bum-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this paper, we propose a current-driven synchronous rectifier driver circuit for LLC resonant half-bridge converters. The proposed driver circuit detects a relatively low current in the primary side of the transformer although a large current is flowing in the secondary side. Due to this feature, the driver circuit has a simple circuit structure and stabilizes the switching operation with a logic-level switching voltages for the synchronous rectifier. The operation and performance of the proposed driver circuit are confirmed with a prototype of 1kW class LLC resonant half-bridge converter. The experimental results proved that the proposed synchronous rectifier driver method improves the power conversion efficiency by around 1% and reduces the internal power loss by 17W.