• Title/Summary/Keyword: habitat evaluation

Search Result 316, Processing Time 0.026 seconds

Development of Habitat Suitability Index for Habitat Restoration of Narrow-mouth Frog(Kaloula borealis) (맹꽁이 서식처 복원을 위한 서식처 적합성 지수(HSI) 개발)

  • Shim, Yun-Jin;Cho, Dong-Gil;Park, Sohyun;Lee, Dong-Jin;Seo, Yun-Hee;Kim, Sang-Hyuk;Kim, Duck-Ho;Ko, Sang-Beom;Cha, Jin-Yeol;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.2
    • /
    • pp.109-123
    • /
    • 2014
  • Kaloula borealis is the species of Amphibia which belongs to Kaloula genus and it is the only species inhabiting in Korea. The population size and habitat of Kaloula borealis have been significantly decreased on a national scale due to the diversified developments and the uses of agricultural pesticides. Accordingly, the Ministry of Environment has designated and managed them as the class II of endangered species, in accordance with "Endangered Species Protection and Management Act"; however, a particular study focused on the ecological restoration of Kaloula borealis is desperately needed to prevent their extinction. This study was conducted to propose the HSI (Habit Suitability Index) of Kaloula borealis based on literature survey on ecology and habitats of Kaloula borealis, as well as their HSI. Factors to be investigated in HSI include: space, feed, cover, water(breeding) and threatening factors and the variables of each factor were also proposed. The distance from wetland, grassland, farm, stream and rice paddy, as well as the altitude of spawning pond were proposed as the variables of space, whereas the bed structure of forest and low-rise grassland were proposed as the variables of feeding. The variables of water (breeding) include the area of permanent and temporary wetlands, coverage of emerged pants (ratio of open water), water depth, water temperature, water quality, pH level, etc., whereas the presence of predator, distance from street and pollutants were proposed as the variables of threatening factor. The sub-standards by HSI factor of Kaloula borealis have been drawn from in-depth consultation with experts and based on this, the final HSI of Kaloula borealis was developed.

Assessment of an Index of Biological Integrity (IBI) using Fish Assemblages in Keum-Ho River, Korea (어류군집을 이용한 금호강의 생물보전지수 (Index of Biological Integrity, IBI) 평가)

  • 염동혁;안광국;홍영표;이성규
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.2
    • /
    • pp.215-226
    • /
    • 2000
  • We evaluated the aquatic ecosystem of Keum-Ho River through applications of the Index of Biological Integrity (IBI) using fish assemblages and Qualitative Habitat Evaluation Index (QHEI) during June-November 1999. Overall IBI values ranged from 13 to 37 with mean of 23 (n=25, Std. error= 1.16), indicating a "Poor" or "Very Poor" condition according to the criteria of Karr (1981) and U.S. EPA (1993). The values of mean IBI declined at the rate of $0.22km^{-1}$(($r^2$=0.91, p< 0.05) along the longitudinal distance from the headwaters to the down-river. Reduced IBI values at down-river (St. 4 and 5) were attributed to the decreases in riffle benthic species and the relative abundance of insectivore and increases in tolerant species, anormalies and exotic species. Spatial pattern in IBI agreed with QHEI values, which showed a linear relation ($r^2$=0.998, p< 0.001) with mean number of species. Field measurements of conductivity and pH, indicators for variation of conservative ions, showed that the river water was diluted up to 30% by summer precipitation and surface run-off from the watershed, resulting in physical and chemical instability during the monsoon. For these reasons, average IBI values during monsoon and postmonsoon decreased more than 20% compared to pre -monsoon. Before the perturbation of the system (i.e., pre-monsoon), values of QHEI were inversely correlated (r=-0.99, p< 0.0001) with realtive abundance of native omnivore and were positively correlated (r=0.87, p=0.05) with relative abundance of native carnivore. These results indicate that spatial degradation of habitat quality modified the species richness and trophic structure, producing decreased IBI values. (Biological integrity, IBI, Monsoon, Habitat, River, Korea)bitat, River, Korea)

  • PDF

Fish Community and Estimation of Optimal Ecological Flowrate in Up and Downstream of Hoengseong Dam (횡성댐 상·하류의 어류군집 구조와 최적 생태유량 산정)

  • Hur, Jun-Wook;Kang, Hyoeng-Sik;Jang, Min-Ho;Lee, Jeong-Yeol
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.925-935
    • /
    • 2013
  • In this study, a comprehensive field monitoring was conducted to understand habitat conditions of fish species in up and downstream of Hoengseong Dam. Based on the monitoring data, riverine health conditions such as composition ratio of fish species, bio-diversity (dominance index, diversity, evenness and richness), index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI) were assessed, and optimal ecological flowrates (OEF) were estimated using the habitat suitability indexes (HSI) established for three fish species Coreoleuciscus splendidus, Pungtungia herzi and Microphysogobio longidorsalis selected as icon species using the physical habitat simulation system (PHABSIM). The total number of species sampled was 20 species, and two species of Zacco platypus (30.4%) and C. splendidus (20.9%) dominated the fish community. As a result, it was revealed that IBI and QHEI values decreased from upstream to downstream along the river. The estimated IBI value ranged from 24 to 36 with average being 30.9 out of 50, rendering the site ecologically fair to good health conditions. HSI for C. splendidus were determined according to three different month in terms of season: Spring (April), Summer (August) and Autumn (October). HSI for flow velocity were estimated at 0.7 to 0.8 m/s for the Spring, 0.5 to 1.0 m/s for the Summer and 0.8 to 0.9 m/s for the Autumn. HSI for water depth were estimated at 0.3 to 0.5 m for the Spring; 0.3 to 0.5 m for the Summer; and 0.3 to 0.4 m for the Autumn. OEF was estimated at 4.2 and $6.5m^3/s$ for the Spring and Autumn, and $12.0m^3/s$ for the Summer. Overall, it was concluded that the Hoengseong Dam has been relatively well protected from the anthropogenic disturbance for the legally protected species including the endemic species studied in this study.

Evaluation of Habitat Suitability of Major Honey Trees in the Mt. Gariwang and Mt. Yumeong through Machine Learning Approach (머신러닝기법을 활용한 가리왕산과 유명산 지역 주요 밀원수의 서식지 적합성 평가)

  • Yong-Ju Lee;Min-Ki Lee;Hae-In Lee;Chang-Bae Lee;Hyeong-Seok Sim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.311-325
    • /
    • 2023
  • This study was conducted to analyze the habitat suitability of the major honey trees including Kalopanax septemlobus Koidz., Prunus spp., Tilia spp., and Styrax obassia Siebold & Zucc. indigenous to mountain Gariwang and Yumeong using the machine learning approach (i.e., MaxEnt model). The AUC values of the model predictions were mostly above 0.7, and the results of the response curves showed that the environmental drivers that had effects on the habitat suitability of the major honey trees were elevation, mean annual precipitation, and mean annual temperature. These results indicate that climatic drivers along the elevation gradient are the main environmental drivers in explaining the distribution patterns of the major honey trees. In addition, the results of the response curves of Prunus spp. and Styrax obassia Siebold & Zucc. differed slightly in terms of slope and mean annual solar radiation as the main environmental drivers. The results of this study will be valuable for the establishment of honey tree forests and management plans for the natural and artificial forests in South Korea, as well as for the mapping the distribution of honey trees. Further studies at different regional levels, reflecting biotic drivers, will be needed to expand the production of honey and pollen at different strata and to produce honey annually.

Comparison between village characteristics and habitat quality to application OECM in Nakdong-Jeongmaek (낙동정맥 내 OECM 적용 가능 지역 발굴을 위한 마을 특성과 서식지 질 비교)

  • Oh, Ju-Hyeong;Kim, Su-Jin;Kim, Tae-Su;Jang, Gab-Su;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.51-65
    • /
    • 2023
  • The Jeongmaeks are Korea's unique forest space recognition system that diverged from the Baekdudaegan. The Jeongmaeks are easily exposed to pressure because it is adjacent to the living area. Among them, Nakdong-Jeongmaek has high biodiversity, but damage is accelerating. According to the Convention on Biological Diversity (CBD) in 2022, the target is to expand the area of terrestrial and marine protected areas to 30% of national territory by 2030. As of September 2023, the area of terrestrial protected areas in South Korea is only 16.97% of the country's territory. This is due in part to the high proportion of private forests in the region, which makes it difficult to establish protected areas. Therefore, there is a need to establish Other Effective Area-based Conservation Measure (OECMs), which pursue complex and effective conservation that considers multiple values, as an alternative to protected areas. This study aims to identify areas suitable for OECM and to provide opinions on the establishment of appropriate management plans for each value using SOM and InVEST Habitat Quality model. This study evaluated the habitat quality of 206 villages located within 1km of the Nakdong-Jeongmaek and compared the characteristics of villages classified by SOM. As a result, the habitat quality was 0.867 for Tourism village (ClusterIV), 0.838 for Conservation village (ClusterVI), 0.835 for Mixed village (ClusterI), 0.796 for Production (ClusterV), 0.731 for Rural village (ClusterIII) and 0.625 for Urban village (ClusterII). When the distribution was identified through statistical analysis, the Kruskal-Wallis test showed that the distributions were not identical, with a p-value of 1.53e-08. Dunn's test showed a difference between Tourism, Conservation and Rural, Urban village. However, Mixed village was overestimated due to the lack of villages and the small area included in the study area. Moreover, Conservation village was somewhat under-evaluated in the analysis due to the use of a single weight for protected areas. It is necessary to perform additional reinforcement of the value evaluation of Jeongmaeks by conducting Forest Resource Survey and the National Natural Environment Survey. Therefore, we believe that sufficient validity for the establishment of OECMs in the Nakdong-Jeongmaek can be provided by addressing these limitations and conducting additional research.

Development and Application of an Evaluation Model for Biotope Appraisal in terms of Species and Biotope Preservation (종과 비오톱 보전을 위한 가치평가 모형 개발 및 적용)

  • Cho, Hyun-Ju;Lee, Hyun-Taek;SaGong, Jung-Hee;Ra, Jung-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.59-80
    • /
    • 2010
  • This research This research aims at developing systemic evaluation model in terms of biotope preservation through reports, literatures, and expert survey analysis by implementing biotope structure analysis in area level with selecting Hyunpoong and Yuga-myeon, Dalseong county, Daegu metropolitan city as a site. First of all, as a result of biotope type classification of research site, biotope type groups are classified into total 13, and its biotope types are divided into total 61. Also, as a result of literature analysis, total 18 items are drawn such as diversity of biotope typical species as a index item to assess the preservation value of biotope, and the first evaluation index are divided into 10 and the second ones are divided into 8 according to characteristic of index items. As a result of expert survey analysis, All 10 index items, first evaluation index, show high importance average (above 4.7). As a result of implementation of main cause for categorizing evaluation index by characteristic, there are 3 factors such as 'obstructive factor.' Based on above survey analysis result, as a result of estimating the weight of each item, 'restoration factor' showed the highest, 3.4541, but 'factor of habitat stability' showed 3.1468, which is the lowest The systemic value evaluation was set by comprehensively analyzing these results. As a result of biotope preservation value evaluation through applying research site, total 19 types which are abundant in vegetation are classified into I class, 12 types in II class, 5 types in III class, 10 types in IV class, and 15 types in V class respectively. Lastly, as a result of second evaluation, it is analyzed that there are 17 special meaningful space to preserve species and biotope(1a, 1b) and 61 meaningful space to preserve species (2a, 2b, 2c).

Distributions of Endangered Fish Species and Their Relations to Chemical Water Quality-Ecological Stream Health in Geum-River Watershed (금강 대권역 대표 멸종위기 담수어류의 분포 특성 및 이화학적 수질-하천 생태건강도와의 관계분석)

  • Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.986-995
    • /
    • 2016
  • The objective of this study was to analyze the distribution of endangered fish species and elucidate their relations on chemical water quality, physical habitat conditions and ecological stream health. The dominant species in the watershed was Pseudopungtungia nigra (Pn), Gobiobotia macrocephala (Gm), Gobiobotia brevibarba (Gb), Liobagrus obesus (Lo), and Iksookimia choii (Ic) in the order. The species of Pn designated as "critical endangered species (I) (CER)", was most widely distributed species among the endangered species, so the designation of the species should be re-evaluated. The endangered species was most popular (4 species, 384 individuals) in the Cho-River region of eighteen lotic regions. According to the analysis of chemical tolerance limits in the habitats with endangered fish species, biological oxygen demand (BOD) and total phosphorus (TP) was analyzed as "very good" (Ia) and "good condition" in the chemical criteria of the Ministry of Environment, Korea. Also, chemical conditions, based on ammonia-N ($NH_{4+}$), total nitrogen (TN), phosphate-P ($PO_{4^-}P$) were much better in the habitat with endangered species (Hw) than the habitat without endangered species (Ho). In the meantime, the species of Ic showed wide ranges on the chemical tolerance, so physical habitat conditions, such as the size of substrate particles (sand) and hydrological regime, were considered as more important factors than the chemical water quality, if the water quality is not largely degraded. The endangered species were also more distributed in the high-order (4-6) streams than the low-order (1-3) streams. The evaluation of ecological stream health, based on multi-metric model of the Index of Biological Integrity (IBI), showed the large difference between the Hw (21.6, fair condition)and Ho (30.5, good condition), indicating that the habitat maintained well chemically and physically had higher distributions of endangered species. Overall, the designation of CER on the Pn should be re-evaluated due to wide-distributions, and the protections from water pollution and the habitat conservations on the endangered species are necessary in the watershed.

Ecological Health Diagnosis of Sumjin River using Fish Model Metric, Physical Habitat Parameters, and Water Quality Characteristics (어류모델 메트릭, 물리적 서식지 변수 및 수질특성 분석에 의한 섬진강의 생태 건강성 진단)

  • Lee, Eui-Haeng;Choi, Ji-Woong;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.184-192
    • /
    • 2007
  • This study was to evaluate ecological health of Sumjin River during April${\sim}$June 2006. The ecological health assessments was based on the Index of Biological Integrity (IBI), Qualitative Babitat Evaluation Index (QHEI), and water chemistry. For the study, the models of IBI and QHEI were modified as 10 and 11 metric attributes, respectively. We also analyzed spatial patterns of chemical water quality over the period of $2002{\sim}2005$, using the water chemistry dataset, obtained from the Ministry of Environment, Korea. In Sumjin River, values of IBI averaged 33 (n= 12), which is judged as a "Fair${\sim}$Good" condition after the criteria of Barbour at al. (1999). There was a distinct spatial variation. Mean IBI score at Site 5 was estimated as 40, indicating a "Good" condition whereas, the mean at Site 3 was 23, indicating a "Poor${\sim}$Fair" condition. Habitat analysis showed that QHEI values in the river averaged 109 (n=6), indicating a "Marginal" condition after the criteria of Harbour et al. (1999). Values of BOD and COD averaged 1.3 mg $L^{-1}$ (scope: $0.9{\sim}1.8$ mg $L^{-1}$) and 3.3 mg $L^{-1}$ (scope: $2.8{\sim}4.0$ mg $L^{-1}$), respectively during the study. It was evident that chemical pollutions by organic matter were minor in the river. Total nitrogen (TN) and total phosphorus (TP) averaged 2.5 mg $L^{-1}$ and 0.067 mg $L^{-1}$, respectively, and the nutrients did not show large longitudinal gradients between the upper and lower reach. Overall, dataset of IBI, QHEI, and water chemistry suggest that river health has been well maintained, compared to other major watersheds in Korea and should be protected from habitat disturbance and chemical pollutions.

Intergrated Ecological Health Assessments in Cho River (초강의 통합적 생태건강성 평가)

  • Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.320-330
    • /
    • 2006
  • An integrated health of a lotic ecosystem, Cho River, was evaluated by various approaches such as conventional water quality analysis, physical assessments of Qualitative Habitat Evaluation Index (QHEI), and the bioassay of Index of Biological Integrity (IBI) durin August${\sim}$September 2005. The IBI model used in the study was based on original multivariate metric model and then modified the metric attributes of the model for the regional application. Physical habitat health, based on the QHEI, was estimated using eleven metrics. During the study, values of IBI model averaged 36, which was judged as 'fair' to 'good' conditions. Spatial variations in the model values were evident: the headwater site (S1) was estimated as 48, indicating an 'excellent' condition, and the other sites were estimated 32${\sim}$38, 'good' condition. Values of the QHEI in the all sites averaged 148, which is judged as a good condition. The QHEI values varied from 120 (fair condition) to 199 (excellent condition) depending on the location of the stream. Site 5 (S5) was estimated as 'fair${\sim}$good' condition, while Site 7 (S7) was estimated as 'excellent' condition. The biological health, based on the IBI, reflected the habitat health. However, chemical conditions in terms of pH, turbidity, electric conductivity, dissolved oxygen (DO) did not make a difference in the biological health because of minor chemical differences among the locations.

Physico-chemical Characteristics and In situ Fish Enclosure Bioassays on Wastewater Outflow in Abandoned Mine Watershed (폐광산 지역의 유출수에 대한 이.화학적 수질특성 및 Enclosure 어류 노출시험 평가)

  • An, Kwang-Guk;Bae, Dae-Yeul;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.218-231
    • /
    • 2012
  • The objectives of this study were to evaluate the physico-chemical water quality, trophic and tolerance guilds in the control ($C_o$) and impacted streams of the abandoned mine, along with the ecological health, using a multimetric health model and physical habitat conditions of Qualitative Habitat Evaluation Index (QHEI), during the period of three years, 2005~2007. Also, eco-toxicity ($EE_t$) enclosure tests were conducted to examine the toxic effects on the outflows from the mine wastewater, using the sentinel species of Rhynchocypris oxycephalus, and we compared the biological responses of the control ($C_o$) and treatment (T) to the effluents through a Necropybased Health Assessment Index ($N_b$-HAI). Tissue impact analysis of the spleen, kidney, gill, liver, eyes, and fins were conducted in the controlled enclosure experiments (10 individuals). According to the comparisons of the control ($C_o$) vs. the treatment (T) in physicochemical water quality, outflows from the abandoned mine resulted in low pH of 3.2, strong acid wastewater, high ionic concentrations, based on an electrical conductivity, and high total dissolved solid (TDS). Physical habitat assessments, based on Qualitative Habitat Evaluation Index (QHEI) did not show any statistical differences (p>0.05) in the sampling sites, whereas, the $M_m$-EH model values in a multimetric ecological health ($M_m$-EH) model of the Index of Biological Integrity (IBI), using fish assemblages, were 16~20 (fair condition) in the control and all zero (0, poor condition) in the impacted sites of mine wastewater. In addition, in enclosure eco-toxicity ($EE_t$) tests, the model values of $N_b$-HAI ranged between 0 and 3 in the controls during the three years, indicating an excellent~good condition (Ex~G), and were >100 (range: 100~137) in the impacted sites, which indicates a poor condition (P). Under the circumstances, organ tissues, such as the liver, kidney, and gills were largely impaired, so that efficient water quality managements are required in the outflow area of the abandoned mine watershed.