• 제목/요약/키워드: hESCs

검색결과 45건 처리시간 0.018초

Passaging Method for Expansion of Undifferentiated Human Embryonic Stem Cells by Pipetting Technique

  • Lee, Sung-Geum;Moon, Sung-Hwan;Lee, Soo-Hong;Lee, Hey-Jin;Kim, Jae-Hwan;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • 제30권4호
    • /
    • pp.287-291
    • /
    • 2006
  • We have developed a new passaging technique for the expansion of human embryonic stem cells (hESCs) that involves simply pipetting portions of hESCs acquired from colonies, reducing the laborious and time-consuming steps in the expansion of hESCs. Compared to general mechanical methods of passaging, our pipetting method allowed hESCs colonies to be broken into small fragments, which showed significantly higher attachment rates onto feeder cell layers. This technique produced three times the number of hESCs colonies than conventional mechanical methods. In addition, this pipetting method allowed us to distinguish differentiated hESCs from undifferentiated hESCs during hESCs colony pipetting. The hESCs cultured by pipetting method displayed normal human chromosomes for over 60 passages. According to RT-PCR and immunohistochemical analysis, the hESCs successfully maintained their undifferentiated state and pluripotency which was also confirmed by teratoma formation in viva Therefore, the pipetting method described in this study is a useful tool to efficiently and quickly expand hESCs on a large scale without enzyme treatment.

Effect of Inhibitor of Glycogen Synthase Kinase 3 on Self-Renewal of Human Embryonic Stem Cells

  • Lee Eunyoung;Rho Jeung-yon;Yu Kwon;Paik Sang-Gi;Lee Kyung-Kwang;Han Yong-Mahn
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.93-99
    • /
    • 2005
  • Human embryonic stem cells (hESCs) derived from the inner cell mass of blastocysts have the ability to renew themselves and to differentiate into cell types of all lineage. The present study was carried out to investigate whether the Wnt signaling pathway is related to maintaining self-renewal of hESCs. Glycogen Synthase Kinase 3 (GSK-3) inhibitor, BIO ((2'Z,3'E)-6-Bromoindirubin-3'-oxime) was treated to Miz-hES1 line for activation of Wnt signaling pathway. BIO-nontreated hESCs (control) and BID-treated hESCs were cultured for 5 days in the modified feeder-free system. During the culture of hESCs, differences were observed in the colony morphology between 2 groups. Controls were spread outwards whereas BIO-nontreated hESCs were clumped in the center and the differentiated cells were spreading outwards in the edges. The results of stem cell specific marker staining indicated that control were differentiated in large part whereas BIO-treated hESCs maintain self-renewal in the center of the colony. The results of lineage marker staining suggested that outer cells of the hESC colony were differentiated to the neuronal progenitor cells in both control and BIO-treated hESC. These results indicate that Wnt signaling is related to self-renewal in hESCs. In addition, control group showed higher composition of apoptotic cells $(23.76\%)$ than the BID-treated group $(5.59\%)$. These results indicate that BIO is effective on antapoptosis of hESCs.

Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini

  • Son, Yeon-Sung;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • 제45권6호
    • /
    • pp.547-552
    • /
    • 2007
  • Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, ${\kappa}$) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.

Expression of Major Histocompatibility Complex during Neuronal Differentiation of Somatic Cell Nuclear Transfer-Human Embryonic Stem Cells

  • Jin Saem Lee;Jeoung Eun Lee;Shin-Hye Yu;Taehoon Chun;Mi-Yoon Chang;Dong Ryul Lee;Chang-Hwan Park
    • International Journal of Stem Cells
    • /
    • 제17권1호
    • /
    • pp.59-69
    • /
    • 2024
  • Human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs), induced pluripotent stem cells, and somatic cell nuclear transfer (SCNT)-hESCs can permanently self-renew while maintaining their capacity to differentiate into any type of somatic cells, thereby serving as an important cell source for cell therapy. However, there are persistent challenges in the application of hPSCs in clinical trials, where one of the most significant is graft rejection by the patient immune system in response to human leukocyte antigen (HLA) mismatch when transplants are obtained from an allogeneic (non-self) cell source. Homozygous SCNT-hESCs (homo-SCNT-hESCs) were used to simplify the clinical application and to reduce HLA mismatch. Here, we present a xeno-free protocol that confirms the efficient generation of neural precursor cells in hPSCs and also the differentiation of dopaminergic neurons. Additionally, there was no difference when comparing the HLA expression patterns of hESC, homo-SCNT-hESCs and hetero-SCNT-hESCs. We propose that there are no differences in the differentiation capacity and HLA expression among hPSCs that can be cultured in vitro. Thus, it is expected that homo-SCNT-hESCs will possess a wider range of applications when transplanted with neural precursor cells in the context of clinical trials.

인간 배아줄기세포로의 eGFP 유전자 도입 및 특성 분석 (Transduction of eGFP Gene to Human Embryonic Stem Cells and Their Characterization)

  • 김윤영;구승엽;박용빈;오선경;문신용;최영민
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제36권4호
    • /
    • pp.283-292
    • /
    • 2009
  • 목 적: 인간 배아줄기세포 (human embryonic stem cells; hESCs)는 체외에서 오랫동안 증식할 수 있으며, 모든 종류의 세포로 분화할 수 있는 능력을 가진 세포이다. 그러므로, 인간 배아줄기세포는 세포치료의 세포공급원의 역할을 할 수 있을 것으로 기대를 모으고 있다. 인간 배아줄기세포로의 외래 유전자의 도입은 분화경로 규명 및 특정 유전자의 기능 규명 등에 효과적으로 이용될 수 있다. 본 연구에서는 렌티 바이러스를 이용하여 eGFP 유전자를 XY와 XX 핵형을 가진 인간 배아줄기세포주에 도입하고자 하였다. 연구방법: 렌티 바이러스를 이용하여 eGFP 유전자를 인간 배아줄기세포에 도입하였다. 도입된 eGFP의 발현은 형광현미경을 이용하여 확인하였으며, 유세포 분석을 통하여 eGFP 발현세포의 비율을 분석하였다. 또한, eGFP가 도입된 인간 배아줄기세포에서 표지인자인 Oct4, SSEA4 및 Tra-1-81의 발현을 확인하였으며, 배아체의 형성 여부를 확인하여 특성분석을 수행하였다. 결 과: eGFP는 인간 배아줄기세포로 성공적으로 도입되었다. eGFP의 발현은 40 계대 이상 안정적으로 지속되었다. eGFP를 발현하는 인간 배아줄기세포는 eGFP 도입 후에도, 배아줄기세포의 특성을 유지하고 있음이 확인되었다. 또한, 자연적 분화 동안 발현이 감소하는 현상이 관찰되었다. 결 론: 본 연구에서는 렌티 바이러스를 이용하여 eGFP가 도입된 인간 배아줄기세포주를 확립하였으며, 그 특성이 유지되고 있음을 확인하였다. 표지 유전자가 도입된 인간 배아줄기세포주는 분화 및 다른 연구에 활용될 수 있을 것으로 기대된다.

인간 배아 줄기세포와 암 세포에서의 C6orf62의 발현 패턴 (Expression of C6orf62 in Human Embryonic Stem Cells and Cancer Cells)

  • 유한나;류중기;최성준;김진경
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.229-233
    • /
    • 2010
  • Pluripotency and self-renewal capacity of human embryonic stem cells (hESCs) are retained by hESCs related genes as OCT4, SOX2 and NANOG. These genes are shown high expression level in diverse cancer cells and have potential role in the carcinogenesis. On the contrary to this, several genes which are up-regulated in the differentiated hESCs are involved to suppress the carcinogenesis or proliferation of cells. We discovered several genes in immortalized lung fibroblast (WI-38 VA13) by suppression subtractive hybridization. Among them, we focused chromosome 6 open reading frame 62 (C6orf62) which is uncharacterized, mapped to 6p22.3 and generated to Hepatitis B virus X-transactivated proteins (HBVx-transactivated proteins, XTP). Aim of this study was to characterize C6orf62 through analyzing of expression pattern in various cell lines. Expression of C6orf62 was significantly upregulated in diverse normal cell lines than cancer cell lines. And C6orf62 was up-regulated in differentiated hESCs (endothelial cells, neural cells) compared to those of undifferentiated hESCs. Also, C6orf62 in WI-38 cells was highly up-regulated during G1/S transition of the cell cycle. Taken together, C6orf62 is shown expression pattern similar to differentiated hESCs-associated genes which down-regulated in cancer cells. Therefore, we assume that C6orf62 may participate to suppress the proliferation and to induce differentiation through regulating the cell cycle.

Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions

  • Jung, Juwon;Baek, Jin Ah;Seol, Hye Won;Choi, Young Min
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권1호
    • /
    • pp.63-71
    • /
    • 2016
  • Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feeder layers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KO-SR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xeno-free conditions for clinical grade hESCs culture will be useful data in future clinical studies.

Effect of Extrinsic Factors on Differentiated Cardiomyocyte-like Cells from Human Embryonic Stem Cells

  • Gil, Chang-Hyun;Jang, Jae-Woo;Lee, Won-Young;Park, Ze-Won;Lee, Jae-Ho;Chung, Sun-Hwa;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • 제33권4호
    • /
    • pp.263-271
    • /
    • 2009
  • Cardiovascular diseases (CVDs) are one of the most cause of death around the world and fields of interest for cardiac stem cells. Also, current use of terminally differentiated adult cardiomyocytes for CVDs has limited regenerative capacity therefore any significant cell loss may result in the development of progressive heart failure. Human embryonic stem cells (hESCs) derived from blastocyst-stage embryos spontaneously have ability to differentiate via embryo-like aggregates (endoderm, ectoderm and mesoderm) in vitro into various cell types including cardiomyocyte. However, most effective molecule or optimized condition which can induce cardiac differentiation of hESCs is rarely studied. In this study, we developed both spontaneous and inductive cardiomyocyte-like cells differentiation from hESCs by treatment of induced-factors, 5-azacytidine, BMP-4 and cardiogenol C. On the one hand, spontaneous and inductive cardiomyocyte-like cells showed that cardiac markers are expressed for further analysis by RT-PCR and immunocytochemistry. Interestingly, BMP-4 greatly improved homogeneous population of the cardiomyocyte-like cells from hESCs CHA15 and H09. In conclusion, we verified that spontaneously differentiated cells showed cardiac specific markers which characterize cardiac cells, treated extrinsic factors can manage cellular signals and found that hESCs can undergo differentiation into cardiomyocytes better than spontaneous group. This finding offers an insight into the inductive factor of differentiated cardiomyocytes and provides some helpful information that may offer the potential of cardiomyocytes derived from hESCs using extrinsic factors.

Activin-A 처리에 의해 분화 촉진된 인간 배아 줄기세포 유래 내배엽성 세포의 효과적인 정제 (Effective Isolation of Endodermal Lineage Cells Derived from Human Embryonic Stem Cells Post Activin-A Treatment)

  • 김문규;문성환;박순정;이경일;신정민;장재우;정형민
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.135-141
    • /
    • 2010
  • Embryoid bodies (EBs) generated from human embryonic stem cells (hESCs) include spontaneously induced endodermal lineage cells (ELCs). Activin-A plays important roles in the endoderm differentiation of hESCs. Despite studies on the generation of ELCs from hESCs with treatment of Actvin-A, it was unclear for localization and pattern of ELCs by Activin-A during differentiation of hESCs. Accordingly in this study, we knew that Actvin-A increased the cystic EBs formation, including the highly enriched AFP (endoderm lineage specific marker)-expressing cells in the surface of cystic EBs. To induce the EBs formation from undifferentiated hESCs, cells were transferred onto petri-dish and cultured in suspension condition without bFGF removed hESC media (EB media) for 3 days. Next to investigate the effect of Activin-A, EBs were subsequently cultured in EB media supplement with 100 ng/ml Activin-A for 3 days. After 5~7 days of Activin-A treatment, cystic EBs began to appear which increased in numbers reaching ~60% of initially formed EBs over 5 days. Endoderm lineage marker, AFP were highly expressed and specifically localized at the surface region of cystic EBs comparison with normal EBs. We next attached the cystic EBs onto gelatin-coated plates and cultured for 5 days. In the results of real-time PCR and immunocytochemistry analysis, AFP-expressing cells migrated and localized at the outgrowth region of attached cystic EBs. To obtain the AFP-expressing cells of the outgrowth region, we manually isolated by using micro-dissection and cultured them. These cells strongly express AFP over 70% of isolated cells post re-plating. Here, we first showed an expression pattern of specifically localized ELCs by Activin-A during differentiation of hESCs. From this observation, we could highly purified ELCs from undifferentiated hESCs. Taken together, our system will provide a novel and efficient option to generate ELCs from hESCs.

Transcriptional Profiles of Imprinted Genes in Human Embryonic Stem Cells During In vitro Differentiation

  • Park, Sang-Wook;Do, Hyo-Sang;Kim, Dongkyu;Ko, Ji-Yun;Lee, Sang-Hun;Han, Yong-Mahn
    • International Journal of Stem Cells
    • /
    • 제7권2호
    • /
    • pp.108-117
    • /
    • 2014
  • Background and Objectives: Genomic imprinting is an inheritance phenomenon by which a subset of genes are expressed from one allele of two homologous chromosomes in a parent of origin-specific manner. Even though fine-tuned regulation of genomic imprinting process is essential for normal development, no other means are available to study genomic imprinting in human during embryonic development. In relation with this bottleneck, differentiation of human embryonic stem cells (hESCs) into specialized lineages may be considered as an alternative to mimic human development. Methods and Results: In this study, hESCs were differentiated into three lineage cell types to analyze temporal and spatial expression of imprinted genes. Of 19 imprinted genes examined, 15 imprinted genes showed similar transcriptional level among two hESC lines and two human induced pluripotent stem cell (hiPSC) lines. Expressional patterns of most imprinted genes were varied in progenitors and fully differentiated cells which were derived from hESCs. Also, no consistence was observed in the expression pattern of imprinted genes within an imprinting domain during in vitro differentiation of hESCs into three lineage cell types. Conclusions: Transcriptional expression of imprinted genes is regulated in a cell type- specific manner in hESCs during in vitro differentiation.