We investigate the error estimates of the h and p versions of the finite element method for an elliptic problems. We present theoretical results showing the p version gives results which are not worse than those obtained by the h version in the finite element method.
h-version 유한요소법에 근거를 둔 형상최적화 설계에서는 초기모델의 기하형상에 대한 이상적인 체눈설계가 최종해석시에는 적합하지 않을 수 있게 된다. 그러므로, 최적화의 반복단계마다 모델의 단변형상에 대한 새로운 체눈설계가 필요하게 된다. 그러나 p-version 유한요소법은 형상최적화 문제 해석을 위한 매우 매력적인 대안으로 제시될 수 있다 p-version 유한요소법은 h-version 유한요소법과 비교하여 다음과 같은 큰 장점을 갖고 있다. 첫째로, 보간함수의 차수가 3차이상이 되면 요소의 찌그러진 형상에 대한 유한요소 해에 별 영향을 미치지 않는다. 둘째로, 심지어 응력특이 문제도 h-version에 비해 p-version은 적절한 체눈설계를 하게되면 훨씬 효율적이다. 셋째로, 초지 체눈설계와 최종 체눈설계가 동일하므로 반복단계마다 새롭게 체눈설계를 할 필요가 없어진다. Bezier의 곡선보간법, 경사투사법과 적분형 르장드르 다항식에 기초를 둔 2차원 형상최적화를 위한 p-version 모델이 제시되었다. 수치해석 경과는 p-version 소프트웨어인 RASNA를 사용하여 수행되었다.
In this paper, we briefly study the condition number of stiffness matrix with $h$-version and analyze it with $p$-version of the finite element method.
We describe some results for the $h$ version which pertain to the questions on numerical quadrature. We also present an example that illustrates the rate of convergence predicted for linear elements under certain quadrature schemes in [2], [4], [5].
For second order linear elliptic problems over smooth domains, it is well known that the rate of convergence of the error in the $L_2$norm is one order higher than that in the $H^1$norm. For polygonal domains with reentrant corners, it has been shown in [15] that this extra order cannot be fully recovered when the h-version is used. We present theoretical and computational examples showing the sharpness of our results.
p-version 유한요소법을 사용한 바닥 슬래브의 탄성해석은 어떤 종류의 요형모서리, 개구 그리고 손상단면을 갖는 점에서 응력특이성을 수반하게 된다. Reissner-Mindlin의 평판이론에 근거한 C.deg.- 평판 계층요소를 사용한 결과가 이론치 및 참고문헌에 발표된 수치해석값과 비교되었다. h-, p-와 hp-version의 수렴속도는 전체적 차원에서의 자유도 증가에 따른 에너지 노름값을 사용하여 예측할 수 있다. 만약에 자유도의 항으로 나타내지는 정확도를 여러 해석방법을 비교하는 기준으로 삼으면 본 연구에서 새로 제안되는 p-version 유한요소해석법의 근사해는 종래의 h-version에 근거하여 현재 까지 발표된 어떤 것 보다 훨씬 효율적 접근방법이라 하겠다. 해석예로는 150.deg. 둔각을 갖는 마름모꼴평판과 손상단면을 갖는 정방형평판이 사용되었다.
We analyze the error in the p version of the of the finite element method when the effect of the quadrature error is taken in the load vector. We briefly study some results on the $H^{1}$ norm error and present some new results for the error in the $L^{2}$ norm. We inves-tigate the quadrature error due to the numerical integration of the right hand side We present theoretical and computational examples showing the sharpness of our results.
본 논문에서는 Reissner-Mindlin 평판이론에 근거한 계층적 $C^{\circ}$-평판요소가 제안되었다. 적분형 르장드르 형상함수에 근거한 계층요소를 제안하는 이유는 종래의 h-version 유한요소법의 개념 을 사용하여 전단구속 효과등에 대한 해의 정확도 및 수치안정성을 확보할 수 있는 요소를 만드는데 여전히 어려움이 수반되기 때문이다. 적응적 체눈 p-세분화와 선택적 형상함수 차수 p의 분포를 사용하는 hp-version 유한요소법을 사용하여 내부주변은 자유단의 개구부를 갖고, 외부주변이 단순지지된 L-형 평판해석을 수행하였는데 종래의 h-version 유한요소법에 비해 우월한 수렴성과 전단구속을 피할 수 있는 등의 알고리즘 효율성을 보여 주고 있다.
적분형 르장드르 다항식과 가상균열확장법을 사용한 p-version균열모델이 선형 탄성파괴력학에서 응력확대계수를 산정할 수 있도록 제안되었다. 이 모델의 큰 장점은 소수의 요소를 사용하기 때문에 입력재료를 최소화 할 수 있고 균열선단 부근에서 높은 정확도와 빠른 수검율을 얻을 수 있다는 것이다. 이 연구를 통해 얻어진 두 가지 결론은 다음과 같다. 첫째, 변형에너지의 정해인 극한치가 수검구간에 있는 연속된 3개의 p-version 유한요소 결과로 부터 확정 할 수 있다는 것이다. 둘째, 인장력을 받는 균열판 해석에서 p-version의 수검율은 균등 또는 유사균등 요소분할에 근거를 둔 h-version모델에 비해 거의 2배 가량 빠름을 알 수 있다.
A novel boundary stress resolution method is suggested in this paper, which is based upon the displacements of finite element analysis and of high precision with stress boundary condition strictly satisfied. The method is used to modify the Zienkiewicz-Zhu ($Z^2$) a posteriori error estimator and for the h-version adaptive finite element analysis of crack problems. Successful results are obtained.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.