• Title/Summary/Keyword: h-PDMS

Search Result 104, Processing Time 0.033 seconds

Pilot Test with Pervaporation Seperation of Aqueous IPA Using a Composite PEI/PDMS Membrane Module (IPA/물 혼합액의 PEI/PDMS 복합막 모듈을 이용한 투과증발 파일롯 분리특성)

  • Cheon, Bong Su;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.385-390
    • /
    • 2015
  • To determine the pervaporation separation characteristics of IPA/water mixtures, PEI/PDMS hollow fiber membrane module commercialized by Airrane Co. was subjected to both lab and pilot tests. The flux of $0.52kg/m^2h$ and IPA concentration of 68.5% at $25^{\circ}C$ were obtained whereas the $1.368kg/m^2h$ and 61.2% were measured at $55^{\circ}C$. In order to realized the durability of the module, the long-term test (at $50^{\circ}C$) of 100 days has been conducted and as a result, the flux $1.03{\sim}1.15kg/m^2h$ and IPA concentration 61.8~62.5% were maintained with the initial values.

Precise Replica Technology Study for Fine Optical Waveguide Device (미세 광소자용 도파로 정밀 복제기술 연구)

  • Oh S.H.;Kim C.S.;Jeong M.Y.;Boo J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1493-1496
    • /
    • 2005
  • In this paper, we describe a simple, precise and low cost method of fabricating PDMS stamp for UV embossing. It is important to improve the replication quality of stamp because the accuracy of fabricated structure is related to that of the stamp in UV embossing. The PDMS stamp has been fabricated by the replica molding technology with ultrasonic vibration to eliminate micro-air bubbles during the fabrication process of PDMS stamp. Also, this fabrication to use ultrasonic vibration promotes PDMS solution to fill into micro channel and edge parts. We report the fabrication of an optical core using UV embossing with fabricated PDMS stamp. This fabricated core is $7\;\mu{m}\;at\;depth,\;6\;\mu{m}\;at\;width.\;This\;measured\;value\;has\;the\;difference\;below\;1\;\mu{m}$compared to the original stamp. The surface roughness of core is about 14 nm root mean square. This is satisfactory value to use low-loss optical waveguide. Our successful demonstration of precise replica technology presents an alternative approach for the stamp of UV embossing.

  • PDF

Hydrophobisity Recovery of PDMS Blended with Fluorinated Silicone Rubber Using Dynamic Contact Angle Measurement (동적 접촉각 측정을 이용한 실리콘고무 블렌드의 발수성회복 검토)

  • Lee, C.R.;Ryu, S.S.;Homma, H.;Izumi, K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.6-8
    • /
    • 2001
  • This report describes the effect of the blending of poly(trifluoropropylmethylvinylsiloxane) (PTFPMVS) with poly(dimethylsiloxane) (PDMS) on the surface properties such as water repellency using dynamic contact angle (DCA) measurement. We have investigated the surface molecular mobility of the PDMS/PTFPMVS blends via a DCA measurement and an adhesion tension relaxation. It could be shown that a flexible side-chain segment in PTFPMVS having higher surface energy, could be reoriented easily in water to decrease the interfacial tension of the polymer/water interface, which seems to play a major role at the decrease of the receding contact angle and the surface resistivity of PDMS/PTFPMVS blends.

  • PDF

$\mu$CP Process Technology for Nanopattern Implementation (나노패턴 구현을 위한 $\mu$CP 공정기술)

  • 조정대;신영재;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.624-627
    • /
    • 2003
  • Microcontact printing (uCP) of alkanethiols on gold was the first representative of soft-lithography processes. This is an attempt to enhance the accuracy of classical to a precision comparable with optical lithography, creating a low-cost, large-area, and high-resolution patterning process. Microcontact printing relies on replication of a pattered PDMS stamp from a master to form an elastic stamp that can be inked with a SAM solution(monolayer -forming ink) using either immersion inking or contact inking. The inked PDMS stamp is then used to print a pattern that selectively protects the gold substrate during the subsequent etch.

  • PDF

Fabrication of Fluorinated Polymeric Membranes and Their Noble Gas Separation Properties (불소 표면 개질 고분자 분리막의 제조와 노블가스 분리특성)

  • Kim, Gi-Bum;Yoon, Kuk-Ro
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.475-478
    • /
    • 2010
  • Fluorinated polymeric membranes were prepared by direct surface modification of PDMS with fluorine gas ($50{\sim}2000\;{\mu}mol/mol$ in nitrogen). The formed fluorinated polymeric membranes were characterized by FT-IR spectroscopy, GC (Gas chromatography), atomic force microscopy, and scanning electron microscopy. Direct fluorination resulted in the change of permeability and selectivity of various gases (pure gases such as $CO_2$, $O_2$, $N_2$, $C_2H_4$, mixture of He, Ne, Kr, Xe) through PDMS membranes. Fluorination resulted in the maximum 50% increase of selectivity through PDMS membrane.

Preparation and Properties of Coating Materials of Polydimethylsiloxane with Acrylate Groups (Acrylate기를 갖는 Polydimethylsiloxane계 코팅 액의 제조와 그 특성)

  • Bak, Seung Woo;Kang, Ho Jong;Kang, Doo Whan
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.138-143
    • /
    • 2014
  • ${\alpha},{\omega}$-Hydroxypropyl polydimethylsiloxane (HO-PDMS) was prepared by hydrosilylation of hydrogen terminated polydimethylsiloxane with allyl alcohol. Polydimethylsiloxane modified urethane with isocyanate group (PSU) was prepared from cyclic trimer of hexamethylenediisocyanate with HO-PDMS. PDMS modified urethane base resin with acrylic group (PSUA) was prepared from the urethane reaction of PSU with isocyanate group and 2-hydroxyethylmethacrylate. Their structures were characterized using FTIR and NMR. Coating materials were prepared by mixing PSUA, acrylic hardner, photo-initiator, and solvent and coated on PET film to obtain flexible and hard coating film by UV irradiation. Transparency of coating film was 89.7%, contact angle, $88^{\circ}$, and pencil hardness, 3H.

Fabrication of Flexible OTFT Array with Printed Electrodes by using Microcontact and Direct Printing Processes

  • Jo, Jeong-Dai;Lee, Taik-Min;Kim, Dong-Soo;Kim, Kwang-Young;Esashi, Masayoshi;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.155-158
    • /
    • 2007
  • Printed organic thin-film transistor(OTFT) to use as a switching device for an organic light emitting diode(OLED) were fabricated in the microcontact printing and direct printing processes at room temperature. The gate electrodes($5{\mu}m$, $10{\mu}m$, and $20{\mu}m$) of OTFT was fabricated using microcontact printing process, and source/drain electrodes ($W/L=500{\mu}m/5{\mu}m$, $500{\mu}m/10{\mu}m$, and $500{\mu}m/20{\mu}m$) was fabricated using direct printing process with hard poly(dimethylsiloxane)(h-PDMS) stamp. Printed OTFT with dielectric layer was formed using special coating system and organic semiconductor layer was ink-jet printing process. Microcontact printing and direct printing processes using h-PDMS stamp made it possible to fabricate printed OTFT with channel lengths down to $5{\mu}m$, and reduced the process by 20 steps compared with photolithography. As results of measuring he transfer characteristics and output characteristics of OTFT fabricated with the printing process, the field effect characteristic was verified.

  • PDF

A Transient Separation Behavior of PDMS/PSF Hollow Fiber Membrane Modules for Ethanol-Water Mixtures (PDMS/PSF 중공사 분리막의 시간 의존적 에탄올-물 분리 거동 연구)

  • Muhammad Junaid, Ammar;Arepalli, Devipriyanka;Kim, Min-Zy;Ha, Seong Yong;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2022
  • Many studies on pervaporation (PV) for the separation of dilute alcohols as an alternative to conventional energy-intensive technique of distillation have been conducted earlier. The pervaporation transition behavior of ethanol-water mixtures through the PDMS/PSF membrane is important, in order to understand the mechanism of diffusion process. Therefore, in the present work, transient PV behavior for 50 wt% EtOH/H2O mixture at 50℃ was investigated by using 1194 cm2 PDMS/PSF hollow fiber membrane modules. The overall total flux and the separation factor of all the membrane modules increased initially and then gradually decreased with respect to PV time. The initial increase can be attributed to fact that membrane fibers were dry and it took time to dissolve into the membrane surface, but the subsequent decrease is due to the depletion of ethanol concentration in the feed. Therefore, it was confirmed that the ethanol permeation through a PDMS membrane is governed by the solution-diffusion mechanism.