• Title/Summary/Keyword: gyrosensor

Search Result 7, Processing Time 0.022 seconds

Development and Evaluation of a New Gait Phase Detection System using FSR Sensors and a Gyrosensor (저항센서와자이로센서를이용한새로운보행주기검출시스템의개발및평가)

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.196-203
    • /
    • 2004
  • In this study, a new gait phase detection system using both FSR(Force Sensing Resister) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the posterior aspect of a shoe. An algorithm was also developed to determine eight different gait transitions among four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was compared with the conventional gait phase detection system using only FSR sensors in various gait experiments such as level walking, fore-foot walking and stair walking. In fore-foot walking and stair walking, the developed system showed much better accuracy and reliability to detect gait phases. The developed gait phase detection system using both FSR sensors and a gyrosensor will be helpful not only to determine pathological gait phases but to apply prosthetics, orthotics and functional electrical stimulation to patients with gait disorders.

Comparison of Motion Sensor Systems for Gait Phase Detection (보행주기 검출용 모션 센서 시스템의 비교)

  • Park, Sun-Woo;Sohn, Ryang-Hee;Ryu, Ki-Hong;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Gait phase detection is important for evaluating the recovery of gait ability in patients with paralysis, and for determining the stimulation timing in FES walking. In this study, three different motion sensors(tilt sensor, gyrosensor and accelerometer) were used to detect gait events(heel strike, HS; toe off, TO) and they were compared one another to determine the most applicable sensor for gait phase detection. Motion sensors were attached on the shank and heel of subjects. Gait phases determined by the characteristics of each sensor's signal were compared with those from FVA. Gait phase detections using three different motion sensors were valid, since they all have reliabilities more than 95%, when compared with FVA. HS and TO were determined by both FVA and motion sensor signals, and the accuracy of detecting HS and TO with motion sensors were assessed by the time differences between FVA and motion sensors. Results show of that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal subjects. Vertical acceleration from the accelerometer could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient group A and B. Valid error ranges of HS and TO were determined by 3.9 % and 13.6 % in normal subjects, respectively. The detection of TO from all sensor signals was valid in both patient group A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B. We could determine the most applicable motion sensors to detect gait phases in hemiplegic patients. However, since hemiplegic patients have much different gait patterns one another, further experimental studies using various simple motion sensors would be required to determine gait events in pathologic gaits.

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.

Measurement and Comparison of Finger Tapping Movement in Patients with Idiopathic Parkinson's Disease and Normal Subjects using Gyrosensor (자이로센서를 이용한 특발성 파킨슨병 환자와 정상인의 손가락 벌렸다 오므리기 동작의 측정과 비교)

  • Kim, Ji-Won;Kwon, Yu-Ri;Lee, Jae-Ho;Eom, Gwang-Moon;Kwon, Do-Young;Koh, Seong-Beom;Park, Byung-Kyu;Hong, Jung-Hwa
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.240-244
    • /
    • 2010
  • The purpose of this study is to compare finger tapping (FT) movement of patients with Parkinson's disease (PD) with normal subjects. A gyrosensor system was used for the measurement of FT movement, because it provides angular velocity free from the gravitational artifact and it can be used during clinical FT test listed in unified PD rating scale (UPDRS). Forty PD patients (age: 65.7 ${\pm}$ 11.1 yrs, H&Y stage:2.3 ${\pm}$ 0.5), 14 age-matched elderly subjects (65${\pm}$3.9 yrs) and 17 healthy young subjects (24${\pm}$2.1yrs) participated in this study. Angular velocity of finger tapping movement was measured in both right and left index finger. As quantitative measures, root-mean-squared (RMS) angular velocity, RMS angle, peak power and total power were used. ANOVA showed that all measures were significantly different among three groups (p<0.001) in all quantitative measures. Post-hoc test revealed that all quantitative measures except peak power in patients with PD were significantly smaller than in both healthy elderly and young subjects (p<0.01). This suggests that the measures developed in this study can distinguish patients with PD from normal subjects.

Effects of Medication and Deep Brain Stimulation on the Finger-tapping Speed and Amplitude of Parkinsonian Bradykinesia (파킨슨성 완서증의 손가락 마주치기 속도와 크기에 대한 약물과 뇌심부자극의 효과)

  • Kim, Ji-Won;Kwon, Yu-Ri;Park, Sang-Hoon;Eom, Gwang-Moon;Koh, Seong-Beom;Jang, Ji-Wan;Lee, Hye-Mi
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • The purpose of this study is to investigate whether medication and deep brain stimulation (DBS) have differential effects on the speed and amplitude of bradykinesia in patients with Parkinson's disease (PD). Five PD patients with implanted DBS electrodes (age: $60.6{\pm}7.4yrs$, H&Y stage: $3.1{\pm}0.2$) participated in this study. FT (finger tapping) movement was measured using a gyrosensor system in four treatment conditions: Med (Medication)-off/DBS-off, Med-off/DBS-on, Med-on/DBS-off and Med-on/DBS-on. Quantitative measures representing average speed and amplitude of FT movement included root-mean-squared (RMS) angular velocity and RMS angle. One-way repeated measures ANOVA showed that RMS angular velocity of Med-on/DBS-on was significantly greater than those of Med-off/DBS-off and Med-off/DBS-on (p < 0.01) whereas RMS angle was not different among conditions (p = 0.06). Two way repeated measures ANOVA showed that only medication improved RMS angular velocity (p < 0.01), whereas both medication and DBS had no significant effect on RMS angle (p > 0.02). Effect size of RMS angular velocity was greater than that of RMS angle in both medication and DBS. This suggests that medication and DBS have differential effects on FT bradykinesia and velocity and amplitude impairments may be associated with different functional aspects in PD.

Comparison of Movement of Rapid Alternating Movements of Hands in Idiopathic Parkinson's Disease Patients and Normal Subjects using Angular Velocity Measurement System (각속도 측정시스템을 이용한 특발성 파킨슨병 환자와 정상인의 빠른 손놀림 동작의 비교)

  • Kim, Ji-Won;Kwon, Yu-Ri;Eom, Gwang-Moon;Jun, Jae-Hoon;Yi, Jeong-Han;Lee, Jeong-Whan;Kwon, Do-Young;Koh, Seong-Beom;Park, Byung-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.674-677
    • /
    • 2010
  • The purpose of this study was to analyze bradykinesia of forearm movement in patients with Parkinson's disease (PD) as compared to those of normal subjects. A gyrosensor was selected for the measurement of forearm movement, because it can provide angular velocity signal which is free from the gravitational artifact and also because it can be conveniently used during clinical test of bradykinesia. Forty PD patients (age: $65.7\pm11.1$ yrs, H&Y stage:$2.3\pm0.5$), 14 age-matched elderly subjects ($65\pm3.9$ yrs) and 17 healthy young subjects ($24\pm2.1$ yrs) participated in this study. Angular velocity during forearm movement of pronation/supination was measured in both arms. Suggested quantitative measures of bradykinesia were root-mean-squared (RMS) angular velocity, RMS angle, peak power and total power which were derived from the angular velocity. ANOVA showed that all measures were significantly different among three groups (p<0.001). Subsequent post-hoc test revealed that all measures in PD patients were significantly smaller than in healthy elderly and healthy young subjects (p<0.05). This results suggest that PD patients can be differentiated from normal subjects using suggested measures.